
An axiomatic basis for
bidirectional programming

Josh H-S Ko1 and Zhenjiang Hu1,2
1 National Institute of Informatics (NII), Japan 

2 SOKENDAI (The Graduate University for Advanced Studies), Japan

Symposium on Principles of Programming Languages (POPL) 
11 January 2018, Los Angeles, CA, US

Lenses
(asymmetric & state-based)

Extraction & update

(a,	b,	c) b
get

bʹ(a,	bʹ,	c)
put

source view

Well-behaved lenses

				:	S	→	V 
				:	S	→	V	→	S
get
put

get	(put	s	v)	=	v
put	s	(get	s)	=	s

Get

1

2

2

map	f	∘	filter	p

0 0

Put

1

2

20

0

4

Put

1

2

20

0

4

Put

1

2 2

0 0

4

Put

1

2 2

0 0

44

Put

1

2 2

0 0

4

4

Put

2 2

0 0

44

1

Put

2 2

0 0

44

Bidirectional 
programming languages

one program for two directions

Bidirectional 
programming

write one program to control two directions

∘	filter	p

“Get-based” approach

map	f <alignment	strategy>
<management	of	ignored	elements>

align	p	match	b	create	conceal	=	
		case	
				normal	[]	[]	exit	[]	
						rearrV	[]	->	()	
								skip	const	()	
				normal	(s::_)	(v::_)	|	p	s	&&	match	s	v	exit	(s::_)	|	p	s	
						rearrS	(s::ss)	->	(s,	ss)	
								rearrV	(v::vs)	->	(v,	vs)	
										b	*	align	p	match	b	create	conceal	
				adaptive	(s::_)	[]	|	p	s	
						\ss	_	->	let	(prefix,	remaining)	=	span	p	ss	
															in		catMaybes	(map	conceal	prefix)	++	remaining	
				normal	(s::_)	_	|	not	(p	s)	exit	(s::_)	|	not	(p	s)	
						rearrS	(s::ss)	->	(s,	ss)	
								rearrV	vs	->	((),	vs)	
										skip	const	()	*	align	p	match	b	create	conceal	
				adaptive	ss	(v::_)	|	isJust	(findFirstMatch	v	ss)	
						\ss	(v::_)	->	uncurry	(::)	(fromJust	(findFirstMatch	v	ss))	
				adaptive	_	(v::_)	|	p	(create	v)	
						\ss	(v::_)	->	create	v	::	ss

“Put-based” approach

If put is well-behaved with both get and getʹ,  
then get	=	getʹ.

bidirectional programming unidirectional programming

You still need to figure
out the get behaviour!
Yes, but we can do it just from the put direction…

Get is really 
a part of put.

Synchronisation
Maintaining a consistency relation

get	:	S	→	V

put	:	S	→	V	→	S
“executable” consistency relation

consistency restorer

get	(put	s	v)	=	v

put	s	(get	s)	=	s

correctness

hippocraticness

“Get-based” approach

∘	filter	p
map	f <alignment	strategy>

<management	of	ignored	elements>

First: write a consistency relation

Second: annotate the consistency relation 
with restoration behaviour

“Put-based” approach
align	p	match	b	create	conceal	=	
		case	
				normal	[]	[]	exit	[]	
						rearrV	[]	->	()	
								skip	const	()	
				normal	(s::_)	(v::_)	|	p	s	&&	match	s	v	exit	(s::_)	|	p	s	
						rearrS	(s::ss)	->	(s,	ss)	
								rearrV	(v::vs)	->	(v,	vs)	
										b	*	align	p	match	b	create	conceal	
				adaptive	(s::_)	[]	|	p	s	
						\ss	_	->	let	(prefix,	remaining)	=	span	p	ss	
															in		catMaybes	(map	conceal	prefix)	++	remaining	
				normal	(s::_)	_	|	not	(p	s)	exit	(s::_)	|	not	(p	s)	
						rearrS	(s::ss)	->	(s,	ss)	
								rearrV	vs	->	((),	vs)	
										skip	const	()	*	align	p	match	b	create	conceal	
				adaptive	ss	(v::_)	|	isJust	(findFirstMatch	v	ss)	
						\ss	(v::_)	->	uncurry	(::)	(fromJust	(findFirstMatch	v	ss))	
				adaptive	_	(v::_)	|	p	(create	v)	
						\ss	(v::_)	->	create	v	::	ss

First: write a program to restore
a consistency relation in mind

Second: the consistency relation 
becomes executable for free

Put

1

2

20

0

4

Put

1

2 2

0 0

4

4
map	f	∘	filter	p

To program a consistency restorer,
the programmer must have a
consistency relation in mind.

a put-based language makes executable

consistency relation

Formalise!
in terms of a program logic

BiGUL
Bidirectional Generic Update Language

replace skip	const	()*
rearrV	v	->	(v,	())

atomic lenses

lens combinators

Hoare-style logic

replace{	s	v	|	True	} {	sʹ	s	v	|	sʹ	=	v	}

An Axiomatic Basis for Bidirectional Programming 41:7

{ ∅ } fail { ∅ } { } replace { s′ v | s′ = v } { s v | f s = v } skip f { s′ s | s′ = s }

{ L } l { L′ } { R } r { R′ }
{ L ∗ R } l ∗ r { L′ ∗ R′ }

T ⊆ R { R } b { R′ } R′ ∩ ⟨ s v | T s v ⟩ ⊆ T ′

{T } b {T ′ }

{ s wpat | R s wpat } b { s′ s wpat | R′ s′ s wpat }

{ s vpat | R s vpat } rearrV vpat → wpat

!

b { s′ s vpat | R′ s′ s vpat }

{ tpat v | R tpat v } b { tpat ′ tpat v | R′ tpat ′ tpat v }

{ spat v | R spat v } rearrS spat → tpat

!

b { spat ′ spat v | R′ spat ′ spat v }

∀(normal M exit E

!

b) ∈ bs.

{ R ∩ M̂ } b { R′ ∩ ⟨ s′ v | M̂ s′ v ∧ Ê s′ ⟩ }
∀(adaptive M

!

f) ∈ bs.

∀s , v. (R ∩ M̂) s v ⇒
(R ∩ N) (f s v) v where

∧ ∀s′. R′ s′ (f s v) v ⇒ R′ s′ s v N =
⋃

[M̂ | (normal M . . .) ∈ bs]
{ R ∩ D } case

!

bs { R′ } D =
⋃

[M | (normal/adaptive M . . .) ∈ bs]

Fig. 2. Putback proof rules. M̂ denotes the “actual main condition” of a branch: the main condition M of
the branch intersected with the negations of the main conditions of all the previous branches. “Actual exit

conditions” Ê are analogous.

4.1 Atomic Constructs

BiGUL has three atomic constructs, whose corresponding rules are in the first row of Figure 2.
The fail construct has type S ←↩ V for any types S and V . The precondition of the fail rule

is the empty relation ∅, saying that no input can make fail compute successfully. This directly
corresponds to the implementation: put fail s v = Nothing.
The replace construct has type S ←↩ S for any type S, and replaces the source with the view

regardless of what they are, i.e., put replace s v = Just v. Correspondingly, the precondition of the
replace rule is the always-true relation, and the postcondition states that the updated source s′ will
be equal to the view v.

The skip construct takes a function f : S → V in the host language as an argument and has type
S ←↩ V . It ignores the view and leaves the source as it is; correspondingly, the postcondition says
that the updated source s′ will be equal to the original source s. Unlike replace, we cannot skip
under all circumstances — before throwing the view away, we must ensure that it can be recovered
from the source, or otherwise there is no hope to establish PutGet. The precondition thus requires
that the view can be computed from the source by f . In the implementation, this precondition is
checked dynamically: put (skip f) s v = if f s == v then Just s else Nothing.

4.2 Product

Given two BiGUL programs l : S ←↩ V and r : T ←↩ W , we can form the product of the two
programs l ∗ r : (S × T) ←↩ (V × W), with l operating on the first components and r on the
second components. If two putback triples with preconditions L and R have been established for
l and r , the precondition of the product program will be

L ∗ R = ⟨ (s , t) (v , w) | L s v ∧ R t w ⟩

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 41. Publication date: January 2018.

				{	_	()	}

Reasoning
{	_	_	}
rearrV	v	→	(v,	())
		{	_	(_,	())	}
				{	_	_	}
				replace
				{	wʹ	_	v	|	wʹ	=	v	}
		*
				{	_	()	|	const	()	s	=	()	}
				skip	const	()
				{	hʹ	h	()	|	hʹ	=	h	}
		{	(wʹ,	hʹ)	(_,	h)	(v,	())	|	wʹ	=	v	∧	hʹ	=	h	}
{	(wʹ,	hʹ)	(_,	h)	v	|	wʹ	=	v	∧	hʹ	=	h	}

Main theorem

If				{	s	v	|	R	s	v	}		b		{	sʹ	_	v	|	C	sʹ	v	}	

then		b.get	∩	R		⊆		C

get behaviour can be
found in put triples.

A part of

If				{	s	v	|	R	s	v	}		b		{	sʹ	_	v	|	C	sʹ	v	}	

then		b.get	∩	R		⊆		C

Main theorem

{	s	v	|	False	}		b		{	sʹ	_	v	|	C	sʹ	v	}
{	s	v	|	True		}		b		{	sʹ	_	v	|	C	sʹ	v	}

Domain of get

Range of put

Range triples

An Axiomatic Basis for Bidirectional Programming 41:17

{{ ∅ }} fail {{ ∅ }} {{ s v | s = v }} replace {{ }} {{ s v | f s = v }} skip f {{ }}

{{ L }} l {{ P ′ }} {{ R }} r {{Q′ }}
{{ L ∗ R }} l ∗ r {{ P ′ ∗ Q′ }}

R ∩ ⟨ s | Q′ s ⟩ ⊆ T {{ R }} b {{ P ′ }} Q′ ⊆ P ′

{{T }} b {{Q ′ }}

{{ s wpat | R s wpat }} b {{ P ′ }}

{{ s vpat | R s vpat }} rearrV vpat → wpat

!

b {{ P ′ }}

{{ tpat v | R tpat v }} b {{ tpat | P ′ tpat }}

{{ spat v | R spat v }} rearrS spat → tpat

!

b {{ spat | P ′ spat }}

∀n = (normal M exit E

!

b) ∈ bs.

{{ R ∩ M̂ }} b {{ P ′n }} where

{{ R }} case

!

bs {{ P ′ }} P ′ =
⋃

[P ′n ∩ Ê | n = (normal M exit E

!

b) ∈ bs]

Fig. 3. Range proof rules

range considered will be forced to include those related by get with its domain restricted to P ′. So,
for example, we will not be able to deduce {{m n | m = n + 1 }} replace {{ }} even though the left
conjunct in Lemma 5.3 is true for this pair of R and P ′. This “side effect” normally does not prevent
us from deriving range triples, though, since preconditions are normally larger than consistency
relations, which in turn contain the graphs of get transformations.

Back in Section 3, where we only had putback triples, Theorem 3.8 only enabled us to understand
the forward behaviour of BiGUL programs to a limited extent. Now supplemented with range
triples, we can prove a stronger and satisfactory result.

Theorem 5.4 (total forward consistency). Let b : S ←↩ V , R : P (S × V), C : P (S × V), and
P ′ : PS.

If { R } b { s′ v | C s′ v } and {{ R }} b {{ P ′ }}

then ∀s. P ′ s ⇒ ∃v. get b s = Just v ∧ C s v .

Proof. Suppose that P ′ holds for a source s. By the range triple and Theorem 5.2, get b s will
compute successfully to some view v such that R s v holds, making s and v fall into G (get b) ∩ R.
The putback triple and Theorem 3.8 can then take over and establish C s v as required. !

Theorem 5.4 tells us that, by supplementing a putback triple for b with a range triple with the
same precondition, we can know on which subset of sources get b will compute successfully and
that the behaviour of get b will conform to the consistency relation stated in the putback triple.

In summary, nowwe have enoughmachinery to tell us all wewant to know about the bidirectional
behaviour of a BiGUL program: By deriving a putback triple { R } b { s′ s v | C s′ v ∧ R′ s′ s v }
to reason about the behaviour of b, we know that put b will compute successfully on R, establish
consistency C, and have retentive behaviour R′. Then, by additionally deriving a range triple
{{ R }} b {{ P ′ }} to estimate the range of b, we know that get b will compute successfully on P ′ and
conform to the same consistency relation C established by put b. Notably, as we will see next,
derivations of range triples are usually significantly easier than derivations of putback triples, so in
practice there is usually not much more work to do than deriving putback triples.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 41. Publication date: January 2018.

{{	s	v	|	R	s	v	}}	b	{{	sʹ	|	Pʹ	sʹ	}}

Main theorem MK II

If					{	s	v	|	R	s	v	}		b		{	sʹ	_	v	|	C	sʹ	v	}  
and				

then		b.get	is	defined	on	P  ́
and			b.get|Pʹ					C⊆

{{	s	v	|	R	s	v	}}	b	{{	sʹ	|	Pʹ	sʹ	}}

Get behaviour can be found
in put and range triples.

Also in the paper
• An introduction to BiGUL in terms of the

axiomatic semantics

• Recursion rules and key-based alignment

• Everything formalised in Agda

41

An Axiomatic Basis for Bidirectional Programming

HSIANG-SHANG KO, National Institute of Informatics, Japan

ZHENJIANG HU∗, National Institute of Informatics, Japan

Among the frameworks of bidirectional transformations proposed for addressing various synchronisation
(consistency maintenance) problems, Foster et al.’s [2007] asymmetric lenses have influenced the design of
a generation of bidirectional programming languages. Most of these languages are based on a declarative
programming model, and only allow the programmer to describe a consistency specification with ad hoc
and/or awkward control over the consistency restoration behaviour. However, synchronisation problems
are diverse and require vastly different consistency restoration strategies, and to cope with the diversity, the
bidirectional programmer must have the ability to fully control and reason about the consistency restoration
behaviour. The putback-based approach to bidirectional programming aims to provide exactly this ability, and
this paper strengthens the putback-based position by proposing the first fully fledged reasoning framework for
a bidirectional language — a Hoare-style logic for Ko et al.’s [2016] putback-based language BiGUL. The Hoare-
style logic lets the BiGUL programmer precisely characterise the bidirectional behaviour of their programs by
reasoning solely in the putback direction, thereby offering a unidirectional programming abstraction that is
reasonably straightforward to work with and yet provides full control not achieved by previous approaches.
The theory has been formalised and checked in Agda, but this paper presents the Hoare-style logic in a
semi-formal way to make it easily understood and usable by the working BiGUL programmer.

CCSConcepts: • Software and its engineering→Domain specific languages; •Theory of computation
→ Axiomatic semantics; Hoare logic;

Additional Key Words and Phrases: asymmetric lenses, putback-based bidirectional programming

ACM Reference Format:
Hsiang-Shang Ko and Zhenjiang Hu. 2018. An Axiomatic Basis for Bidirectional Programming. Proc. ACM
Program. Lang. 2, POPL, Article 41 (January 2018), 29 pages. https://doi.org/10.1145/3158129

1 INTRODUCTION

The need for synchronisation — or consistency maintenance — is pervasive in computing. A simple
but typical example is synchronisation among documents of different formats, in which case con-
sistency means that the documents have the same content; whenever the content of one document
is modified, the other documents should also be updated to restore the consistency. Over the past
decade, frameworks of bidirectional transformations have been proposed to address a diverse range
of synchronisation problems [Czarnecki et al. 2009]. One such framework is Foster et al.’s [2007]
asymmetric lenses, which are highly influential such that the term bidirectional programming has
become largely synonymous with lens-based approaches (including lens combinators and bidi-
rectionalisation; see, e.g., Foster et al. [2012]). Asymmetric lenses are designed for synchronising

∗Also with SOKENDAI (The Graduate University for Advanced Studies).

Authors’ addresses: Hsiang-Shang Ko, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430,
Japan, hsiang-shang@nii.ac.jp; Zhenjiang Hu, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo,
101-8430, Japan, hu@nii.ac.jp.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).
2475-1421/2018/1-ART41
https://doi.org/10.1145/3158129

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 41. Publication date: January 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

Get is really 
a part of put.

Get behaviour can be found
in put and range triples.

bidirectional programming unidirectional programming

An axiomatic basis for bidirectional programming
Josh H-S Ko and Zhenjiang Hu (NII & SOKENDAI, Japan)

get	:	S	→	V 
put	:	S	→	V	→	S	

get	(put	s	v)	=	v 
put	s	(get	s)	=	s

unidirectional programming

one program for two directions

?

{	R	}			b			{	Rʹ	}	
{{	R	}}		b		{{	Pʹ	}}

