% «= Programming
Research
ﬁ 7\ Laboratory

An axiomatic basis for
bidirectional programming

Josh H-S Ko' and Zhenjiang Hu'2

1 National Institute of Informatics (NIlI), Japan
2 SOKENDAI (The Graduate University for Advanced Studies), Japan

Symposium on Principles of Programming Languages (POPL)
11 January 2018, Los Angeles, CA, US



Lenses

(asymmetric & state-based)



Extraction & update

source view

(a, b, c) L b

(a, b’, ) ::::24 b’

put



Well-behaved lenses

get : S >V
put : S >V > S

\'
S

get (put s v)
put s (get s)






Put






















Bidirectional
programming languages

one program for two directions



Bidirectional
programming

write one program to control two directions



“Get-based” approach

map f <alignment strategy>
o filter p <management of ignored elements>



“Put-based” approach

allgn p match b create conceal =
e

cas
nnnnn 1 [] [] exit []
rearrV 1 => ()

If put is well-behaved with both get and get’,
then get = get’.

bidirectional programming = unidirectional programming



You still need to figure
out the get behaviour!

Yes, but we can do it just from the put direction...



Get is really
a part of put.



Synchronisation

Maintaining a consistency relation

get : S~»>V
“executable” consistency relation

put : S >V > S
consistency restorer

get (put s v) =vV
correctness

put s (get s)
hippocraticness

1
n



“Get-based” approach

First: write a consistency relation

map f <alignment strategy>
o filter p <management of ignored elements>

Second: annotate the consistency relation
with restoration behaviour



“Put-based” approach

allgn p match b create conceal =

case
normal [] [] eXit []

First: write a program to restore
a consistency relation in mind

Second: the consistency relation
becomes executable for free









To program a consistency restorer,
the programmer must have a
consistency relation in mind.

_

a put-based language makeg executable




Formalise!

in terms of a program logic



BIGUL

Bidirectional Generic Update Language

lens combinators

rearrV v -> (v, ())
replace * skip const ()

atomic lenses



Hoare-style logic

{ sv | True } replace { s’ sv | s’ =v}

An Axiomatic Basis for Bidirectional Programming 41:7

[0} fail {0} {__} replace {s" _v|s =v} {sv|fs=v} skipf {s's_|s" =5}

{Ly I {L"} {R} r {R} T € R {R}
{L*R} Ilxr {L'+« R} (T}

{[RF'} RnNn{(_sv|Tsv)y C T
{T"}

b
b

{swpat | Rswpat} b {s" swpat| R s" s wpat}
{ svpat | R s vpat} rearrV vpat — wpatL b {s’ svpat | R s’ s vpat |}
{tpat v | Rtpat v} b {tpat’ tpat v | R’ tpat’ tpat v}
{ spat v | R spat v} rearrS spat — tpat s b { spat’ spat v | R’ spat’ spat v}

VY(normal M exit EL b) € bs.
{IRNM} b {Rn{(s"_v|Ms vAESs)




Reasoning

1__1}
rearrV v > (v, ())
{_ (5 )}
1__1}
replace
{w v |w =v}
*{ 20}

{_ O | const () s=10()}
skip const ()

{h"h ()| h =h}

{ (w5, h") (L, h) (v, O) | w =vAh'=h}
{ (W, h") (L, h)y v |[w =vaAh =h}



Main theorem

{sv|Rsv} b {s’" v |Cs"v}

b.get n R & C(C



A part of
get behaviour can be

found in put triples.



Main theorem

If {sv|Rsv} b {s’

then b.get|n R| & C

~
n un
< <
_l
P
-
D
—
S O
~

O N

nh n

~

< <

v | Cs’ v}

-



Domain of get



Range of put



Range triples

{{sv|Rsvi}}b{{s" | P s"}}

An Axiomatic Basis for Bidirectional Programming

{o) fail {0} {svls=v} replace {_} {sv|fs=v} skipf {_}

Ly P {R) r {Q)  RN(s_[Q's) C T {ry o cp
{L«R} Ixr {P*Q} to"h

b
b

{'swpat | Rswpat} b { P}
{ s vpat | R s vpat }} rearrV vpat — wpatL b {{ P’ }}

{{ tpat v | Rtpat v}} b {{tpat| P’ tpat))
{ spat v | R spat v}} rearrS spat — tpatL b {{ spat | P’ spat }}

Vn= (normaLM exit E L b) € bs.
{RNMYE b { P}




Main theorem MK II

{sv|Rsv} b {s" v|Cs"v}
{{sv|Rsv3}IYb{{s" | P s’"}}

b.get is defined on P’
b.get|P’ ¢ C




Get behaviour can be found
in put and range triples.



Also in the paper

e An introduction to BiGUL in terms of the
axiomatic semantics

e Recursion rules and key-based alignment

e Everything formalised in Agda

An Axiomatic Basis for Bidirectional Programming

HSIANG-SHANG KO, National Institute of Informatics, Japan
ZHENJIANG HU", National Institute of Informatics, Japan




Get is really
a part of put.

\ 4

Get behaviour can be found
in put and range triples.

bidirectional programming # unidirectional programming




ge:E : g »x . unidirectional programming
put : >V >

get (put s v)
put s (get s)

n 1
n <

one program for two directions

An axiomatic basis for bidirectional programming
Josh H-S Ko and Zhenjiang Hu (NIl & SOKENDALI, Japan)

{R} b {R"}
(LR} b WL P }}





