
Palgol: A High-Level DSL for Vertex-Centric
Graph Processing with Remote Data Access

Yongzhe Zhang1,2, Hsiang-Shang Ko2, and Zhenjiang Hu1,2

1 Department of Informatics, SOKENDAI
Shonan Village, Hayama, Kanagawa 240-0193, Japan

2 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

{zyz915,hsiang-shang,hu}@nii.ac.jp

Abstract. Pregel is a popular distributed computing model for dealing
with large-scale graphs. However, it can be tricky to implement graph
algorithms correctly and efficiently in Pregel’s vertex-centric model, espe-
cially when the algorithm has multiple computation stages, complicated
data dependencies, or even communication over dynamic internal data
structures. Some domain-specific languages (DSLs) have been proposed
to provide more intuitive ways to implement graph algorithms, but due
to the lack of support for remote access — reading or writing attributes
of other vertices through references — they cannot handle the above
mentioned dynamic communication, causing a class of Pregel algorithms
with fast convergence impossible to implement.

To address this problem, we design and implement Palgol, a more declar-
ative and powerful DSL which supports remote access. In particular,
programmers can use a more declarative syntax called chain access to
naturally specify dynamic communication as if directly reading data on
arbitrary remote vertices. By analyzing the logic patterns of chain access,
we provide a novel algorithm for compiling Palgol programs to efficient
Pregel code. We demonstrate the power of Palgol by using it to imple-
ment several practical Pregel algorithms, and the evaluation result shows
that the efficiency of Palgol is comparable with that of hand-written code.

1 Introduction

The rapid increase of graph data calls for efficient analysis on massive graphs.
Google’s Pregel [9] is one of the most popular frameworks for processing large-
scale graphs. It is based on the bulk-synchronous parallel (BSP) model [14],
and adopts the vertex-centric computing paradigm to achieve high parallelism
and scalability. Following the BSP model, a Pregel computation is split into
supersteps mediated by message passing. Within each superstep, all the vertices
execute the same user-defined function compute() in parallel, where each vertex
can read the messages sent to it in the previous superstep, modify its own state,
and send messages to other vertices. Global barrier synchronization happens
at the end of each superstep, delivering messages to their designated receivers

2 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

before the next superstep. Despite its simplicity, Pregel has demonstrated its
usefulness in implementing many interesting graph algorithms [9,10,12,15,17].

Despite the power of Pregel, it is a big challenge to implement a graph algo-
rithm correctly and efficiently in it [17], especially when the algorithm consists
of multiple stages and complicated data dependencies. For such algorithms, pro-
grammers need to write an exceedingly complicated compute() function as the
loop body, which encodes all the stages of the algorithm. Message passing makes
the code even harder to maintain, because one has to trace where the messages
are from and what information they carry in each superstep. Some attempts have
been made to ease Pregel programming by proposing domain-specific languages
(DSLs), such as Green-Marl [7] and Fregel [2]. These DSLs allow programmers
to write a program in a compositional way to avoid writing a complicated loop
body, and provide neighboring data access to avoid explicit message passing.
Furthermore, programs written in these DSLs can be automatically translated
to Pregel by fusing the components in the programs into a single loop, and
mapping neighboring data access into message passing. However, for efficient
implementation, the existing DSLs impose a severe restriction on data access —
each vertex can only access data on their neighboring vertices. In other words,
they do not support general remote data access — reading or writing attributes
of other vertices through references.

Remote data access is, however, important for describing a class of Pregel
algorithms that aim to accelerate information propagation (which is a crucial
issue in handling graphs with large diameters [17]) by maintaining a dynamic
internal structure for communication. For instance, a parallel pointer jumping
algorithm maintains a tree (or list) structure in a distributed manner by letting
each vertex store a reference to its current parent (or predecessor), and during
the computation, every vertex constantly exchanges data with the current parent
(or predecessor) and modifies the reference to reach the root vertex (or the head
of the list). Such computational patterns can be found in algorithms like the
Shiloach-Vishkin connected component algorithm [17] (see Section 2.3 for more
details), the list ranking algorithm (see Section 2.4) and Chung and Condon’s
minimum spanning forest (MSF) algorithm [1]. However, these computational
patterns cannot be implemented with only neighboring access, and therefore
cannot be expressed in any of the existing high-level DSLs.

It is, in fact, hard to equip DSLs with efficient remote reading. First, when
translated into Pregel’s message passing model, remote reads require multiple
rounds of communication to exchange information between the reading vertex
and the remote vertex, and it is not obvious how the communication cost can be
minimized. Second, remote reads would introduce more involved data dependen-
cies, making it difficult to fuse program components into a single loop. Things
become more complicated when there is chain access, where a remote vertex is
reached by following a series of references. Furthermore, it is even harder to equip
DSLs with remote writes in addition to remote reads. For example, Green-Marl
detects read/write conflicts, which complicate its programming model; Fregel
has a simpler functional model, which, however, cannot support remote writing

Palgol: Vertex-Centric Graph Processing with Remote Data Access 3

without major extension. A more careful design is required to make remote reads
and writes efficient and friendly to programmers.

In this paper, we propose a more powerful DSL called Palgol3 that supports
remote data access. In more detail:

– We propose a new high-level model for vertex-centric computation, where
the concept of algorithmic supersteps is introduced as the basic computation
unit for constructing vertex-centric computation in such a way that remote
reads and writes are ordered in a safe way.

– Based on the new model, we design and implement Palgol, a more declarative
and powerful DSL, which supports both remote reads and writes, and allows
programmers to use a more declarative syntax called chain access to directly
read data on remote vertices. For efficient compilation from Palgol to Pregel,
we develop a logic system to compile chain access to efficient message passing
where the number of supersteps is reduced whenever possible.

– We demonstrate the power of Palgol by working on a set of representative
examples, including the Shiloach-Vishkin connected component algorithm
and the list ranking algorithm, which use communication over dynamic data
structures to achieve fast convergence.

– The result of our evaluation is encouraging. The efficiency of Palgol is com-
parable with hand-written code for many representative graph algorithms
on practical big graphs, where execution time varies from a 2.53% speedup
to a 6.42% slowdown in ordinary cases, while the worst case is less than a
30% slowdown.

The rest of the paper is organized as follows. Section 2 introduces algorithmic
supersteps and the essential parts of Palgol, Section 3 presents the compiling
algorithm, and Section 4 presents evaluation results. Related work is discussed
in Section 5, and Section 6 concludes this paper with some outlook.

2 The Palgol Language

This section first introduces a high-level vertex-centric programming model (Sec-
tion 2.1), in which an algorithm is decomposed into atomic vertex-centric com-
putations and high-level combinators, and a vertex can access the entire graph
through the references it stores locally. Next we define the Palgol language based
on this model, and explain its syntax and semantics (Section 2.2). Finally we
use two representative examples — the Shiloach-Vishkin connected component
algorithm (Section 2.3) and the list ranking algorithm (Section 2.4) — to demon-
strate how Palgol can concisely describe vertex-centric algorithms with dynamic
internal structures using remote access.

3 Palgol stands for Pregel algorithmic language. The system with all implementation
code and test examples is available at https://bitbucket.org/zyz915/palgol.

https://bitbucket.org/zyz915/palgol

4 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

2.1 The High-Level Model

The high-level model we propose uses remote reads and writes instead of mes-
sage passing to allow programmers to describe vertex-centric computation more
intuitively. Moreover, the model remains close to the Pregel computation model,
in particular keeping the vertex-centric paradigm and barrier synchronization,
making it possible to automatically derive a valid and efficient Pregel implemen-
tation from an algorithm description in this model, and in particular arrange
remote reads and writes without data conflicts.

In our high-level model, the computation is constructed from some basic
components which we call algorithmic supersteps. An algorithmic superstep is
a piece of vertex-centric computation which takes a graph containing a set of
vertices with local states as input, and outputs the same set of vertices with
new states. Using algorithmic supersteps as basic building blocks, two high-level
operations sequence and iteration can be used to glue them together to describe
more complex vertex-centric algorithms that are iterative and/or consist of mul-
tiple computation stages: the sequence operation concatenates two algorithmic
supersteps by taking the result of the first step as the input of the second one,
and the iteration operation repeats a piece of vertex-centric computation until
some termination condition is satisfied.

The distinguishing feature of algorithmic supersteps is remote access. Within
each algorithmic superstep (illustrated in Figure 1), all vertices compute in par-
allel, performing the same computation specified by programmers. A vertex can
read the fields of any vertex in the input graph; it can also write to arbitrary
vertices to modify their fields, but the writes are performed on a separate graph
rather than the input graph (so there are no read-write conflicts). We further
distinguish local writes and remote writes in our model: local writes can only
modify the current vertex’s state, and are first performed on an intermediate
graph (which is initially a copy of the input graph); next, remote writes are prop-
agated to the destination vertices to further modify their intermediate states.
Here, a remote write consists of a remote field, a value and an “accumulative”
assignment (like += and |=), and that field of the destination vertex is modified
by executing the assignment with the value on its right-hand side. We choose to
support only accumulative assignments so that the order of performing remote
writes does not matter.

More precisely, an algorithmic superstep is divided into two phases:

– a local computation (LC) phase, in which a copy of the input graph is created
as the intermediate graph, and then each vertex can read the state of any
vertex in the input graph, perform local computation, and modify its own
state in the intermediate graph, and

– a remote updating (RU) phase, in which each vertex can modify the states
of any vertices in the intermediate graph by sending remote writes. After
all remote writes are processed, the intermediate graph is returned as the
output graph.

Among these two phases, the RU phase is optional, in which case the interme-
diate graph produced by the LC phase is used directly as the final result.

Palgol: Vertex-Centric Graph Processing with Remote Data Access 5

· · · · · ·

· · ·

compute compute compute

· · · · · ·

input graph

output graph

intermedi-ate graph

initial/final
vertex state

field reads

local writes

remote writes

intermediate
vertex state

accumulative
operator

Fig. 1. In an algorithmic superstep, every vertex performs local computation (including
field reads and local writes) and remote updating in order.

2.2 An Overview of Palgol

Next we present Palgol, whose design follows the high-level model we introduced
above. Figure 2 shows the essential part of Palgol’s syntax. As described by
the syntactic category step, an algorithmic superstep in Palgol is a code block
enclosed by “for var in V” and “end”, where var is a variable name that can
be used in the code block for referring to the current vertex (and V stands
for the set of vertices of the input graph). Such steps can then be composed
(by sequencing) or iterated until a termination condition is met (by enclosing
them in “do” and “until . . . ”). Palgol supports several kinds of termination
condition, but in this paper we focus on only one kind of termination condition
called fixed point, since it is extensively used in many algorithms. The semantics
of fixed-point iteration is iteratively running the program enclosed by do and
until, until the specified fields stabilize.

Corresponding to an algorithmic superstep’s remote access capabilities, in
Palgol we can read a field of an arbitrary vertex using a global field access
expression of the form field [exp], where field is a user-specified field name and
exp should evaluate to a vertex id. Such expression can be updated by local or
remote assignments, where an assignment to a remote vertex should always be
accumulative and prefixed with the keyword remote. One more thing about
remote assignments is that they take effect only in the RU phase (after the LC
phase), regardless of where they occur in the program.

There are some predefined fields that have special meaning in our language.
Nbr is the edge list in undirected graphs, and In and Out respectively store
incoming and outgoing edges for directed graphs. Essentially, these are normal
fields of a predefined type for representing edges, and most importantly, the
compiler assumes a form of symmetry on these fields (namely that every edge
is stored consistently on both of its end vertices), and uses the symmetry to
produce more efficient code.

6 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

prog ::= step | prog1 . . . progn | iter
iter ::= do 〈 prog 〉 until fix [field1 , . . . ,fieldn]
step ::= for var in V 〈 block 〉 end
block ::= stmt1 . . . stmtn
stmt ::= if exp 〈 block 〉 | if exp 〈 block 〉 else 〈 block 〉

| for (var ← exp) 〈 block 〉
| let var = exp
| localopt field [var] oplocal exp – local write
| remote field [exp] opremote exp – remote write

exp ::= int | float | var | true | false | inf
| fst exp | snd exp | (exp, exp)
| exp.ref | exp.val | {exp, exp} | {exp} – specialized pair
| exp ? exp : exp | (exp) | exp opb exp | opu exp
| field [exp] – global field access
| funcopt [exp | var ← exp, exp1 , . . . , expn]

func ::= maximum | minimum | sum | . . .

Fig. 2. Essential part of Palgol’s syntax. Palgol is indentation-based, and two special
tokens ‘〈’ and ‘〉’ are introduced to delimit indented blocks.

The rest of the syntax for Palgol steps is similar to an ordinary program-
ming language. Particularly, we introduce a specialized pair type (expressions
in the form of {exp, exp}) for representing a reference with its corresponding
value (e.g., an edge in a graph), and use .ref and .val respectively to access
the reference and the value respectively, to make the code easy to read. Some
functional programming constructs are also used here, like let-binding and list
comprehension. There is also a foreign function interface that allows program-
mers to invoke functions written in a general-purpose language, but we omit the
detail from the paper.

2.3 The Shiloach-Vishkin Connected Component Algorithm

Here is our first representative Palgol example: the Shiloach-Vishkin (S-V) con-
nected component algorithm [17], which can be expressed as the Palgol program
in Figure 3. A traditional HashMin connected component algorithm [17] based
on neighborhood communication takes time proportional to the input graph’s
diameter, which can be large in real-world graphs. In contrast, the S-V algorithm
can calculate the connected components of an undirected graph in a logarithmic
number of supersteps; to achieve this fast convergence, the capability of accessing
data on non-neighboring vertices is essential.

In the S-V algorithm, the connectivity information is maintained using the
classic disjoint set data structure [4]. Specifically, the data structure is a forest,
and vertices in the same tree are regarded as belonging to the same connected
component. Each vertex maintains a parent pointer that either points to some

Palgol: Vertex-Centric Graph Processing with Remote Data Access 7

other vertex in the same connected component, or points to itself, in which
case the vertex is the root of a tree. We henceforth use D[u] to represent this
pointer for each vertex u. The S-V algorithm is an iterative algorithm that
begins with a forest of n root nodes, and in each step it tries to discover edges
connecting different trees and merge the trees together. In a vertex-centric way,
every vertex u performs one of the following operations depending on whether
its parent D[u] is a root vertex:

– tree merging: if D[u] is a root vertex, then u chooses one of its neighbors’
current parent (to which we give a name t), and makes D[u] point to t if t <
D[u] (to guarantee the correctness of the algorithm). When having multiple
choices in choosing the neighbors’ parent p, or when different vertices try
to modify the same parent vertex’s pointer, the algorithm always uses the
“minimum” as the tiebreaker for fast convergence.

– pointer jumping: if D[u] is not a root vertex, then u modifies its own
pointer to its current “grandfather” (D[u]’s current pointer). This operation
reduces u’s distance to the root vertex, and will eventually make u a di-
rect child of the root vertex so that it can perform the above tree merging
operation.

The algorithm terminates when all vertices’ pointers do not change after an
iteration, in which case all vertices point to some root vertex and no more tree
merging can be performed. Readers interested in the correctness of this algorithm
are referred to the original paper [17] for more details.

The implementation of this algorithm is complicated, which contains roughly
120 lines of code4 for the compute() function alone. Even for detecting whether
the parent vertex D[u] is a root vertex for each vertex u, it has to be translated
into three supersteps containing a query-reply conversation between each vertex
and its parent. In contrast, the Palgol program in Figure 3 can describe this
algorithm concisely in 13 lines, due to the declarative remote access syntax.
This piece of code contains two steps, where the first one (lines 1–3) performs
simple initialization, and the other (lines 5–12) is inside an iteration as the main
computation. We also use the field D to store the pointer to the parent vertex.
Let us focus on line 6, which checks whether u’s parent is a root. Here we simply
check D[D[u]] ==D[u], i.e., whether the pointer of the parent vertex D[D[u]] is
equal to the parent’s id D[u]. This expression is completely declarative, in the
sense that we only specify what data is needed and what computation we want
to perform, instead of explicitly implementing the message passing scheme.

The rest of the algorithm can be straightforwardly associated with the Palgol
program. If u’s parent is a root, we generate a list containing all neighboring
vertices’ parent id (D[e.ref]), and then bind the minimum one to the variable t
(line 7). Now t is either inf if the neighbor list is empty or a vertex id; in
both cases we can use it to update the parent’s pointer (lines 8–9) via a remote
assignment. One important thing is that the parent vertex (D[u]) may receive
many remote writes from its children, where only one of the children providing

4 http://www.cse.cuhk.edu.hk/pregelplus/code/apps/basic/svplus.zip

http://www.cse.cuhk.edu.hk/pregelplus/code/apps/basic/svplus.zip

8 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

1 for u in V
2 D[u] := u

3 end
4 do
5 for u in V
6 if (D[D[u]] == D[u])
7 let t = minimum [D[e.ref] | e <- Nbr[u]]
8 if (t < D[u])
9 remote D[D[u]] <?= t

10 else
11 D[u] := D[D[u]]

12 end
13 until fix[D]

Fig. 3. The S-V algorithm in Palgol

the minimum t can successfully perform the updating. Here, the statement a <?=
b is an accumulative assignment, whose meaning is the same as a := min(a,
b). Finally, for the else branch, we (locally) assign u’s grandparent’s id to u’s
D field.

2.4 The List Ranking Algorithm

Another example is the list ranking algorithm, which also needs communication
over a dynamic structure during computation. Consider a linked list L with n el-
ements, where each element u stores a value val(u) and a link to its predecessor
pred(u). At the head of L is a virtual element v such that pred(v) = v and
val(v) = 0. For each element u in L, define sum(u) to be the sum of the values
of all the elements from u to the head (following the predecessor links). The list
ranking problem is to compute sum(u) for each element u. If val(u) = 1 for every
vertex u in L, then sum(u) is simply the rank of u in the list. List ranking can be
solved using a typical pointer-jumping algorithm in parallel computing with a
strong performance guarantee. Yan et al. [17] demonstrated how to compute the
pre-ordering numbers for all vertices in a tree in O(log n) supersteps using this
algorithm, as an internal step to compute bi-connected components (BCC).5

We give the Palgol implementation of list ranking in Figure 4 (which is a 10-
line program, whereas the Pregel implementation6 contains around 60 lines of
code). Sum[u] is initially set to Val [u] for every u at line 2; inside the fixed-point
iteration (lines 5–9), every u moves Pred [u] toward the head of the list and up-
dates Sum[u] to maintain the invariant that Sum[u] stores the sum of a sublist
from itself to the successor of Pred [u]. Line 6 checks whether u points to the

5 BCC is a complicated algorithm, whose efficient implementation requires construct-
ing an intermediate graph, which is currently beyond Palgol’s capabilities. Palgol is
powerful enough to express the rest of the algorithm, however.

6 http://www.cse.cuhk.edu.hk/pregelplus/code/apps/basic/bcc.zip

http://www.cse.cuhk.edu.hk/pregelplus/code/apps/basic/bcc.zip

Palgol: Vertex-Centric Graph Processing with Remote Data Access 9

1 for u in V
2 Sum[u] := Val[u]

3 end
4 do
5 for u in V
6 if (Pred[Pred[u]] != Pred[u])
7 Sum[u] += Sum[Pred[u]]

8 Pred[u] := Pred[Pred[u]]

9 end
10 until fix[Pred]

Fig. 4. The list ranking program

virtual head of the list, which is achieved by checking Pred [Pred [u]] == Pred [u],
i.e., whether the current predecessor Pred [u] points to itself. If the current pre-
decessor is not the head, we add the sum of the sublist maintained in Pred [u] to
the current vertex u, by reading Pred [u]’s Sum and Pred fields and modifying u’s
own fields accordingly. Note that since all the reads are performed on a snapshot
of the input graph and the assignments are performed on an intermediate graph,
there is no need to worry about data dependencies.

3 Compiling Palgol to Pregel

In this section, we present the compiling algorithm to transform Palgol to Pregel.
The task overall is complicated and highly technical, but the most challenging
problem is how to translate chain access (like D[D[u]]) into Pregel’s message
passing model. We describe the compilation of chain access in Section 3.1, and
then the compilation of a Palgol step in Section 3.2, and finally how to combine
Palgol steps using sequence and iteration in Section 3.3.

3.1 Compiling Remote Reads

Our compiler currently recognizes two forms of remote reads. The first form is
chain access expressions like D[D[u]]. The second form is neighborhood access
where a vertex may use chain access to acquire data from all its neighbors, and
this can be described using the list comprehension (e.g., line 7 in Figure 3) or
for-loop syntax in Palgol. The combination of these two remote read patterns is
already sufficient to express quite a wide range of practical Pregel algorithms.
Here we only present the compilation of chain access, which is novel, while the
compilation of neighborhood access is similar to what has been done in Fregel.

Definition and challenge of compiling: A chain access is a consecutive field
access expression starting from the current vertex. As an example, supposing
that the current vertex is u, and D is a field for storing a vertex id, then D[D[u]]
is a chain access expression, and so is D[D[D[D[u]]]] (which we abbreviate to

10 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

D4[u] in the rest of this section). Generally speaking, there is no limitation on
the depth of a chain access or the number of fields involved in the chain access.

As a simple example of the compilation, to evaluate D[D[u]] on every ver-
tex u, a straightforward scheme is a request-reply conversation which takes two
rounds of communication: in the first superstep, every vertex u sends a request
to (the vertex whose id is) D[u] and the request message should contain u’s own
id; then in the second superstep, those vertices receiving the requests should
extract the sender’s ids from the messages, and reply its D field to them.

When the depth of such chain access increases, it is no longer trivial to
find an efficient scheme, where efficiency is measured in terms of the number of
supersteps taken. For example, to evaluate D4[u] on every vertex u, a simple
query-reply method takes six rounds of communication by evaluating D2[u],
D3[u] and D4[u] in turn, each taking two rounds, but the evaluation can actually
be done in only three rounds with our compilation algorithm, which is not based
on request-reply conversations.

Logic system for compiling chain access: The key insight leading to our
compilation algorithm is that we should consider not only the expression to
evaluate but also the vertex on which the expression is evaluated. To use a
slightly more formal notation (inspired by Halpern and Moses [5]), we write
∀u.Kv(u) e(u), where v(u) and e(u) are chain access expressions starting from u,
to describe the state where every vertex v(u) “knows” the value of the expression
e(u); then the goal of the evaluation of D4[u] can be described as ∀u.Ku D

4[u].
Having introduced the notation, the problem can now be treated from a logical
perspective, where we aim to search for a derivation of a target proposition from
a few axioms.

There are three axioms in our logic system:

1. ∀u.Ku u
2. ∀u.Ku D [u]
3. (∀u.Kw(u) e(u)) ∧ (∀u.Kw(u) v(u)) =⇒ ∀u.Kv(u) e(u)

The first axiom says that every vertex knows its own id, and the second axiom
says every vertex can directly access its local field D. The third axiom encodes
message passing: if we want every vertex v(u) to know the value of the expression
e(u), then it suffices to find an intermediate vertex w(u) which knows both
the value of e(u) and the id of v(u), and thus can send the value to v(u). As
an example, Figure 5 shows the solution generated by our algorithm to solve
∀u.Ku D

4[u], where each line is an instance of the message passing axiom.
Figure 6 is a direct interpretation of the implications in Figure 5. To reach

∀u.Ku D
4[u], only three rounds of communication are needed. Each solid ar-

row represents an invocation of the message passing axiom in Figure 5, and
the dashed arrows represent two logical inferences, one from ∀u.Ku D[u] to
∀u.KD[u] D

2[u] and the other from ∀u.Ku D
2[u] to ∀u.KD2[u] D

4[u].
The derivation of ∀u.Ku D

4[u] is not unique, and there are derivations that
correspond to inefficient solutions — for example, there is also a derivation for the

Palgol: Vertex-Centric Graph Processing with Remote Data Access 11

(∀u.Ku u) ∧ (∀u.Ku D[u]) =⇒ ∀u.KD[u] u

(∀u.KD[u] u) ∧ (∀u.KD[u] D2[u]) =⇒ ∀u.KD2[u] u

(∀u.KD[u] D2[u]) ∧ (∀u.KD[u] u) =⇒ ∀u.Ku D2[u]

(∀u.KD2[u] D
4[u]) ∧ (∀u.KD2[u] u) =⇒ ∀u.Ku D4[u]

Fig. 5. A derivation of ∀u.Ku D4[u]

Step 1:

Step 2:

Step 3:

Step 4:

message passing
logical inference

u knows u
u knows D[u]

D[u] knows u
D[u] knows D[D[u]]

u knows D[D[u]] D[D[u]] knows u
D[D[u]] knows D4[u]

u knows D4[u]

Fig. 6. Interpretation of the derivation of ∀u.Ku D4[u]

six-round solution based on request-reply conversations. However, when search-
ing for derivations, our algorithm will minimize the number of rounds of com-
munication, as explained below.

The compiling algorithm: Initially, the algorithm sets as its target a propo-
sition ∀u.Kv(u) e(u), for which a derivation is to be found. The key problem here
is to choose a proper w(u) so that, by applying the message passing axiom back-
wards, we can get two potentially simpler new target propositions ∀u.Kw(u) e(u)
and ∀u.Kw(u) v(u) and solve them respectively. The range of such choices is in
general unbounded, but our algorithm considers only those simpler than v(u) or
e(u). More formally, we say that a is a subpattern of b, written a � b, exactly
when b is a chain access starting from a. For example, u and D[u] are subpatterns
of D[D[u]], while they are all subpatterns of D3[u]. The range of intermediate
vertices we consider is then Sub(e(u), v(u)), where Sub is defined by

Sub(a, b) = { c | c � a or c ≺ b }

We can further simplify the new target propositions with the following function
before solving them:

generalize(∀u.Ka(u) b(u)) =

{
∀u.Ku (b(u)/a(u)) if a(u) � b(u)

∀u.Ka(u) b(u) otherwise

where b(u)/a(u) denotes the result of replacing the innermost a(u) in b(u) with u.
(For example, A[B[C[u]]]/C[u] = A[B[u]].) This is justified because the orig-

12 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

inal proposition can be instantiated from the new proposition. (For example,
∀u.KC[u] A[B[C[u]]] can be instantiated from ∀u.Ku A[B[u]].)

It is now possible to find an optimal solution with respect to the follow-
ing inductively defined function step, which calculates the number of rounds of
communication for a proposition:

step(∀u.Ku u) = 0
step(∀u.Ku D [u]) = 0
step(∀u.Kv(u) e(u)) = 1 + min

w(u)∈Sub(e(u),v(u))
max(x, y)

where x = step(generalize(∀u.Kw(u) e(u)))
y = step(generalize(∀u.Kw(u) v(u)))

It is straightforward to see that this is an optimization problem with optimal
and overlapping substructure, which we can solve efficiently with memoization
techniques.

With this compiling algorithm, we are now able to handle any chain ac-
cess expressions. Furthermore, this algorithm optimizes the generated Pregel
program in two aspects. First, this algorithm derives a message passing scheme
with a minimum number of supersteps, thus reduces unnecessary cost for launch-
ing Pregel supersteps during execution. Second, by extending the memoization
technique, we can ensure that a chain access expression will be evaluated ex-
actly once even if it appears multiple times in a Palgol step, avoiding redundant
message passing for the same value.

3.2 Compiling Palgol Steps

Having introduced the compiling algorithm for remote data reads in Palgol, here
we give a general picture of the compilation for a single Palgol step, as shown
in Figure 7. The computational content of every Palgol step is compiled into a
main superstep. Depending on whether there are remote reads and writes, there
may be a number of remote reading supersteps before the main superstep, and
a remote updating superstep after the main superstep.

We will use the main computation step of the S-V program (lines 5–12 in
Figure 3) as an illustrative example for explaining the compilation algorithm,
which consists of the following four steps:

1. We first handle neighborhood access, which requires a sending superstep that
provides all the remote data for the loops from the neighbors’ perspective.
This sending superstep is inserted as a remote reading superstep immediately
before the main superstep.

2. We analyze the chain access expressions appearing in the Palgol step with
the algorithm in Section 3.1, and corresponding remote reading supersteps
are inserted in the front. (For the S-V algorithm, the only interesting chain
access expression is D[D[u]], which induces two remote reading supersteps
realizing a request-reply conversation.)

Palgol: Vertex-Centric Graph Processing with Remote Data Access 13

chain access
expressions

neighborhood
communication

∀u.Ku u

∀u.Ku D[u]

∀u.KD[u]u

∀u.KD[u]D
2 [u]

send D[u] to
all neighbors

∀u.Ku D2 [u] obtain all D[e.ref]
D[D[u]]

let t = minimum [D[e.ref]

| e <- Nbr[u]]

local computation
send the value of t to D[u]

remote D[D[u]] <?= t

receive messages of t-values
update D field with min

remote
updates

remote reading
superstep

remote reading
superstep

main superstep

remote updating
superstep

Fig. 7. Compiling a Palgol step to Pregel supersteps.

3. Having handled all remote reads, the main superstep receives all the val-
ues needed and proceeds with the local computation. Since the local com-
putational content of a Palgol step is similar to an ordinary programming
language, the transformation is straightforward.

4. What remain to be handled are the remote assignments, which require send-
ing the updating values as messages to the target vertices in the main su-
perstep. Then an additional remote updating superstep is added after the
main superstep; this additional superstep reads these messages and updates
each field using the corresponding remote updating operator.

3.3 Compiling Sequences and Iterations

Finally, we look at the compilation of sequence and iteration, which assemble
Palgol steps into larger programs. A Pregel program generated from Palgol code
is essentially a state transition machine (STM) combined with computation code
for each state. Every Palgol step is translated into a “linear” STM consisting of
a chain of states corresponding to the supersteps like those shown in Figure 7,
and the compilation of a Palgol program starts from turning the atomic Palgol
steps into linear STMs, and implements the sequence and iteration semantics to
construct more complex STMs.

Compilation of sequence: To compile the sequence, we first compile the
two component programs into STMs, then a composite STM is constructed by
simply adding a state transition from the end state of the first STM to the start
state of the second STM.

Compilation of iteration: We first compile the loop body into an STM,
which starts from some state Sstart and ends in a state Send , then we extend

14 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

this STM to implement the fixed-point semantics. Here we describe a generalized
approach which generates a new STM starting from state Sstart′ and ending in
state Send′ :

1. First, a check of the termination condition takes place right before the state
Sstart : if it holds, we immediately enters a new exit state Sexit′ ; otherwise
we execute the body, after which we go back to the check by adding a state
transition from Send to Sstart . This step actually implements a while loop.

2. The termination check is implemented by an OR aggregator to make sure
that every vertex makes the same decision: basically, all vertices determine
whether their local fields stabilize during a single iteration by storing the orig-
inal values beforehand, and the aggregator combines the results and makes
it available to all vertices.

3. We add a new start state Sstart′ and make it directly transit to Sstart . This
state is for storing the original values of the fields, and also to make the
termination check succeed in the first run, turning the while loop into a
do-until loop.

Optimizations: In the compilation of sequence and iteration, two optimiza-
tion techniques are used to reduce the number of states in the generated STMs
and can remove unnecessary synchronizations. Due to space restrictions, we will
not present all the details here, but these techniques share similar ideas with
Green-Marl’s “state merging” and “intra-loop state merging” optimizations [7]:

– state merging : whenever it is safe to do so, the Green-Marl compiler merges
two consecutive states of vertex computation into one. In the compilation
of sequence in Palgol, we can always safely merge the end state of the first
STM and the start state of the second STM, resulting in a reduction of one
state in the composite STM.

– intra-loop state merging : this optimization merges the first and last vertex-
parallel states inside Green-Marl’s loops. In Palgol, we can also discover such
chance when iterating a linear STM inside a fixed-point iteration.

4 Experiments

In this section, we evaluate the overall performance of Palgol and the state-
merging optimisations introduced in the previous section. We compile Palgol
code to Pregel+7, which is an open-source implementation of Pregel written in
C++.8 We have implemented the following six graph algorithms on Pregel+’s
basic mode, which are:

7 http://www.cse.cuhk.edu.hk/pregelplus
8 Palgol does not target a specific Pregel-like system. Instead, by properly implement-

ing different backends of the compiler, Palgol can be transformed into any Pregel-like
system, as long as the system supports the basic Pregel interfaces including message
passing between arbitrary pairs of vertices and aggregators.

http://www.cse.cuhk.edu.hk/pregelplus

Palgol: Vertex-Centric Graph Processing with Remote Data Access 15

Table 1. Datasets for performance evaluation

Dataset Type |V | |E| Description

Wikipedia Directed 18,268,992 172,183,984 the hyperlink network of Wikipedia

Facebook Undirected 59,216,214 185,044,032 a friendship network of the Facebook

USA Weighted 23,947,347 58,333,344 the USA road network

Random Chain 10,000,000 10,000,000 a chain with randomly generated values

Table 2. Comparison of execution time between Palgol and Pregel+ implementation

Dataset Algorithm
4 nodes 8 nodes 12 nodes 16 nodes

Comparison
Pregel+ Palgol Pregel+ Palgol Pregel+ Palgol Pregel+ Palgol

Wikipedia
SSSP 8.33 10.80 4.47 5.61 3.18 3.83 2.41 2.85 18.06% – 29.55%

PageRank 153.40 152.36 83.94 82.58 61.82 61.24 48.36 47.66 −1.62% – 2.26%
SCC 177.51 178.87 85.87 86.52 61.75 61.89 46.64 46.33 −0.66% – 0.77%

Facebook S-V 143.09 142.16 87.98 86.22 67.62 65.90 58.29 57.49 −2.53% – −0.65%

Random LR 56.18 64.69 29.58 33.17 19.76 23.48 14.64 18.16 12.14% – 24.00%

USA MSF 78.80 82.57 43.21 45.98 29.47 31.07 22.84 24.29 4.79% – 6.42%

– PageRank [9]
– Single-Source Shortest Path (SSSP) [9]
– Strongly Connected Components (SCC) [17]
– Shiloach-Vishkin Connected Component Algorithm (S-V) [17]
– List Ranking Algorithm (LR) [17]
– Minimum Spanning Forest (MSF) [1]

Among these algorithms, SCC, S-V, LR and MSF are non-trivial ones which
contain multiple computing stages. Their Pregel+ implementations are included
in our repository for interested readers.

4.1 Performance Evaluation

In our performance evaluation, we use three real-world graph datasets (Face-
book9, Wikipedia10, USA11) and one synthetic graph, and some detailed infor-
mation is listed in Table 1. The experiment is conducted on an Amazon EC2
cluster with 16 nodes (whose instance type is m4.large), each containing 2 vCPUs
and 8G memory. Each algorithm is run on the type of input graphs to which it
is applicable (PageRank on directed graphs, for example) with 4 configurations,
where the number of nodes changes from 4 to 16. We measure the execution
time for each experiment, and all the results are averaged over three repeated
experiments. The runtime results of our experiments are summarized in Table 2.

Remarkably, for most of these algorithms (PageRank, SCC, S-V and MSF),
we observed highly close execution time on the compiler-generated programs
and the manually implemented programs, with the performance of the Palgol
programs varying between a 2.53% speedup to a 6.42% slowdown.

9 https://archive.is/o/cdGrj/konect.uni-koblenz.de/networks/facebook-sg
10 http://konect.uni-koblenz.de/networks/dbpedia-link
11 http://www.dis.uniroma1.it/challenge9/download.shtml

16 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

Table 3. Comparison of the compiler-generated programs before/after optimization

Dataset Algorithm
Number of Supersteps Execution Time

Before After Comparison Before After Comparison

Wikipedia
SSSP 147 50 −65.99% 5.36 2.85 −46.83%

PageRank 93 32 −65.59% 45.57 47.66 4.58%
SCC 3819 1278 −66.54% 106.03 46.33 −56.30%

Facebook S-V 31 23 −25.81% 52.37 57.49 9.78%

Random LR 77 52 −32.47% 17.54 18.16 3.51%

USA MSF 318 192 −39.62% 26.67 24.29 −8.95%

For SSSP, we observed a slowdown up to 29.55%. The main reason is that the
human-written code utilizes Pregel’s vote to halt() API to deactivate converged
vertices during computation; this accelerates the execution since the Pregel sys-
tem skips invoking the compute() function for those inactive vertices, while in
Palgol, we check the states of the vertices to decide whether to perform compu-
tation. Similarly, we observed a 24% slowdown for LR, since the human-written
code deactivates all vertices after each superstep, and it turns out to work cor-
rectly. While voting to halt may look important to efficiency, we would argue
against supporting voting to halt as is, since it makes programs impossible to
compose: in general, an algorithm may contain multiple computation stages, and
we need to control when to end a stage and enter the next; voting to halt, how-
ever, does not help with such stage transition, since it is designed to deactivate
all vertices and end the whole computation right away.

4.2 Effectiveness of Optimization

In this subsection, we evaluate the effectiveness of the “state merging” optimiza-
tion mentioned in Section 3.3, by generating both the optimized and unoptimized
versions of the code and executing them in the same configurations. We use all
the six graph applications in the previous experiment, and fix the number of
nodes to 16. The experiment results are shown in Table 3.

The numbers of supersteps in execution are significantly reduced, and this is
due to the fact that the main iterations in these graph algorithms are properly
optimized. For applications containing only a simple iteration like PageRank
and SSSP, we reduce nearly 2/3 supersteps in execution, which is achieved by
optimizing the three supersteps inside the iteration body into a single one. Sim-
ilarly, for SCC, S-V and LR, the improvement is around 2/3, 1/4 and 1/3 due
to the reduction of one or two superstep in the main iteration(s). The MSF is a
slightly complicated algorithm containing multiple stages, and we get an overall
reduction of nearly 40% supersteps in execution.

While this optimization reduces the number of supersteps, and thus the num-
ber of global synchronizations, it does not necessarily reduce the overall execution
time since it incurs a small overhead for every loop. The optimization produces
a tighter loop body by unconditionally sending at the end of each iteration the
necessary messages for the next iteration; as a result, when exiting the loop, some

Palgol: Vertex-Centric Graph Processing with Remote Data Access 17

redundant messages are emitted (although the correctness of the generated code
is ensured). This optimization is effective when the cost of sending these redun-
dant messages is cheaper than that of the eliminated global synchronizations. In
our experiments, SSSP and SCC become twice as fast after optimization since
they are not computationally intensive, and therefore the number of global syn-
chronizations plays a more dominant role in execution time; this is not the case
for the other algorithms though.

5 Related Work

Google’s Pregel [9] proposed the vertex-centric computing paradigm, which al-
lows programmers to think naturally like a vertex when designing distributed
graph algorithms. Some graph-centric (or block-centric) systems like Giraph+[13]
and Blogel [16] extends Pregel’s vertex-centric approach by making the parti-
tioning mechanism open to programmers, but it is still unclear how to optimize
general vertex-centric algorithms (especially those complicated ones containing
non-trivial communication patterns) using such extension.

Domain-Specific Languages (DSLs) are a well-known mechanism for describ-
ing solutions in specialized domains. To ease Pregel programming, many DSLs
have been proposed, such as Palovca [8], s6raph [11], Fregel [2] and Green-
Marl [7]. We briefly introduce each of them below.

Palovca [8] exposes the Pregel APIs in Haskell using a monad, and a vertex-
centric program is written in a low-level way like in typical Pregel systems. Since
this language is still low-level, programmers are faced with the same challenges
in Pregel programming, mainly having to tackle all low-level details.

At the other extreme, the s6raph system [11] is a special graph processing
framework with a functional interface, which models a particular type of graph
algorithms containing a single iterative computation (such as PageRank and
Shortest Path) by six programmer-specified functions. However, many practical
Pregel algorithms are far more complicated.

A more comparable and (in fact) closely related piece of work is Fregel [2],
which is a functional DSL for declarative programming on big graphs. In Fregel,
a vertex-centric computation is represented by a pure step function that takes a
graph as input and produces a new vertex state; such functions can then be com-
posed using a set of predefined higher-order functions to implement a complete
graph algorithm. Palgol borrows this idea in the language design by letting pro-
grammers write atomic vertex-centric computations called Palgol steps, and put
them together using two combinators, namely sequence and iteration. Compared
with Fregel, the main strength of Palgol is in its remote access capabilities:

– a Palgol step consists of local computation and remote updating phases,
whereas a Fregel step function can be thought of as only describing local
computation, lacking the ability to modify other vertices’ states;

– even when considering local computation only, Palgol has highly declara-
tive field access expressions to express remote reading of arbitrary vertices,
whereas Fregel allows only neighboring access.

18 Yongzhe Zhang, Hsiang-Shang Ko, and Zhenjiang Hu

These two features are however essential for implementing the examples in Sec-
tion 2, especially the S-V algorithm. Moreover, when implementing the same
graph algorithm, the execution time of Fregel is around an order of magnitude
slower than human written code; Palgol shows that Fregels combinator-based
design can in fact achieve efficiency comparable to hand-written code.

Another comparable DSL is Green-Marl [6], which lets programmers describe
graph algorithms in a higher-level imperative language. This language is initially
proposed for graph processing on the shared-memory model, and a “Pregel-
canonical” subset of its programs can be compiled to Pregel. Since it does not
have a Pregel-specific language design, programmers may easily get compila-
tion errors if they are not familiar with the implementation of the compiler.
In contrast, Palgol (and Fregel) programs are by construction vertex-centric
and distinguish the current and previous states for the vertices, and thus have a
closer correspondence with the Pregel model. For remote reads, Green-Marl only
supports neighboring access, so it suffers the same problem as Fregel where pro-
grammers cannot fetch data from an arbitrary vertex. While it supports graph
traversal skeletons like BFS and DFS, these traversals can be encoded as neigh-
borhood access with modest effort, so it actually has the same expressiveness
as Fregel in terms of remote reading. Green-Marl supports remote writing, but
according to our experience, it is quite restricted, and at least cannot be used
inside a loop iterating over a neighbor list, and thus is less expressive than Palgol.

6 Concluding Remarks

This paper has introduced Palgol, a high-level domain-specific language for
Pregel systems with flexible remote data access, which makes it possible for pro-
grammers to express Pregel algorithms that communicate over dynamic internal
data structures. We have demonstrated the power of Palgol’s remote access by
giving two representative examples, the S-V algorithm and the list ranking algo-
rithm, and presented the key algorithm for compiling remote access. Moreover,
we have shown that Fregels more structured approach to vertex-centric com-
puting can achieve high efficiency — the experiment results show that graph
algorithms written in Palgol can be compiled to efficient Pregel programs com-
parable to human written ones.

We expect Palgol’s remote access capabilities to help with developing more
sophisticated vertex-centric algorithms where each vertex decides its action by
looking at not only its immediate neighborhood but also an extended and dy-
namic neighborhood. The S-V and list ranking algorithms are just a start —
for a differently flavored example, graph pattern matching [3] might be greatly
simplified when the pattern has a constant size and can be translated declara-
tively as a remote access expression deciding whether a vertex and some other
“nearby” vertices exhibit the pattern.

Algorithm design and language design are interdependent, with algorithmic
ideas prompting more language features and higher-level languages making it
easier to formulate and reason about more sophisticated algorithms. We believe

Palgol: Vertex-Centric Graph Processing with Remote Data Access 19

that Palgol is a much-needed advance in language design that can bring vertex-
centric algorithm design forward.

Acknowledgements. We thank Dr. Kento Emoto for his advice in the design
of Palgol, Mr. Smith Dhumbumroong for his help in setting up the experiments,
and the reviewers for their insightful comments to improve this paper. This work
was supported by JSPS KAKENHI Grant Numbers 26280020 and 17H06099.

References

1. Chung, S., Condon, A.: Parallel implementation of Bor̊uvka’s minimum spanning
tree algorithm. In: IPPS. pp. 302–308. IEEE (1996)

2. Emoto, K., Matsuzaki, K., Morihata, A., Hu, Z.: Think like a vertex, behave like a
function! A functional DSL for vertex-centric big graph processing. In: ICFP. pp.
200–213. ACM (2016)

3. Fard, A., Nisar, M.U., Ramaswamy, L., Miller, J.A., Saltz, M.: A distributed vertex-
centric approach for pattern matching in massive graphs. In: BigData. pp. 403–411.
IEEE (2013)

4. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. J. Comput. System Sci. 30(2), 209–221 (1985)

5. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. J. ACM 37(3), 549–587 (1990)

6. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and
efficient graph analysis. In: ASPLOS. pp. 349–362. ACM (2012)

7. Hong, S., Salihoglu, S., Widom, J., Olukotun, K.: Simplifying scalable graph pro-
cessing with a domain-specific language. In: CGO. p. 208. ACM (2014)

8. Lesniak, M.: Palovca: describing and executing graph algorithms in Haskell. In:
PADL. pp. 153–167. Springer (2012)

9. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD. pp.
135–146. ACM (2010)

10. Quick, L., Wilkinson, P., Hardcastle, D.: Using Pregel-like large scale graph pro-
cessing frameworks for social network analysis. In: ASONAM. pp. 457–463. IEEE
(2012)

11. Ruiz, O.C., Matsuzaki, K., Sato, S.: s6raph: vertex-centric graph processing frame-
work with functional interface. In: FHPC. pp. 58–64. ACM (2016)

12. Salihoglu, S., Widom, J.: Optimizing graph algorithms on Pregel-like systems.
PVLDB 7(7), 577–588 (2014)

13. Tian, Y., Balmin, A., Corsten, S.A., Tatikonda, S., McPherson, J.: From think like
a vertex to think like a graph. PVLDB 7(3), 193–204 (2013)

14. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

15. Xie, M., Yang, Q., Zhai, J., Wang, Q.: A vertex centric parallel algorithm for
linear temporal logic model checking in Pregel. J. Parallel Distrib. Com. 74(11),
3161–3174 (2014)

16. Yan, D., Cheng, J., Lu, Y., Ng, W.: Blogel: A block-centric framework for dis-
tributed computation on real-world graphs. PVLDB 7(14), 1981–1992 (2014)

17. Yan, D., Cheng, J., Xing, K., Lu, Y., Ng, W., Bu, Y.: Pregel algorithms for graph
connectivity problems with performance guarantees. PVLDB 7(14), 1821–1832
(2014)

	Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Data Access
	Introduction
	The Palgol Language
	The High-Level Model
	An Overview of Palgol
	The Shiloach-Vishkin Connected Component Algorithm
	The List Ranking Algorithm

	Compiling Palgol to Pregel
	Compiling Remote Reads
	Definition and challenge of compiling:
	Logic system for compiling chain access:
	The compiling algorithm:

	Compiling Palgol Steps
	Compiling Sequences and Iterations

	Experiments
	Performance Evaluation
	Effectiveness of Optimization

	Related Work
	Concluding Remarks

