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Abstract. Dependent type theory is rich enough to express that a pro-
gram satisfies an input/output relational specification, but it could be
hard to construct the proof term. On the other hand, squiggolists know
very well how to show that one relation is included in another by alge-
braic reasoning. We demonstrate how to encode functional and relational
derivations in a dependently typed programming language. A program
is coupled with an algebraic derivation from a specification, whose cor-
rectness is guaranteed by the type system.

1 Introduction

Program derivation is the technique of successively applying formal rules to a
specification to obtain a program that is correct by construction. On the other
hand, modern programming languages deploy expressive type systems to guar-
antee compiler-verifiable properties. There has been a trend to explore the ex-
pressiveness of dependent types, which opens a whole new world of type-level
programming techniques. As Altenkirch et al. [1] put it, dependently typed pro-
grams are, “by their nature, proof carrying code.” This paper aims to illustrate
their comment by showing, in the dependently typed language Agda [17], that
programs can actually carry their derivations.

As a teaser, Fig. 1 shows a derivation of a sorting algorithm in progress. The
type of sort-der is a proposition that there exists a program of type [Val ]→ [Val ]
that is contained in ordered? ◦ permute, a relation mapping a list to one of its
ordered permutations. The proof proceeds by derivation from the specification
towards the algorithm. The first step exploits monotonicity of ◦ and that permute
can be expressed as a fold. The second step makes use of relational fold fusion.
The shaded areas denote interaction points — fragments of (proof) code to be
completed. The programmer can query Agda for the expected type and the
context of the shaded expression. When the proof is completed, an algorithm
isort is obtained by extracting the witness of the proposition. It is an executable
program that is backed by the type system to meet the specification.

We have developed a library for functional and relational program deriva-
tion, with convenient notation for algebraic reasoning. Our work aims to be a
co-operation between the squiggolists and dependently-typed programmers that



sort-der : ∃ ([Val ]→ [Val ]) (\f → ordered? ◦ permute w fun f )
sort-der = exists ( ordered? ◦ permute

w〈 (\vs → �-monotonic ordered? (permute-is-fold vs)) 〉
ordered? ◦ foldR combine nil

w〈 {foldR-fusion ordered? ins-step ins-base}0 〉
{ }1 )

isort : [Val ]→ [Val ]
isort = witness sort-der

Fig. 1. A derivation of a sorting algorithm in progress (see Sect. 4 for the details).

may benefit both sides. On the one hand, a number of tools for program trans-
formation [22, 11, 24] have been developed but few of them have been put into
much use. Being able to express derivation within the programming language
encourages its use and serves as documentation. This paper is a case study of
using the Curry-Howard isomorphism which the squiggolists may appreciate:
specification of the program is expressed in their types, whose proofs (deriva-
tions) are given as programs and checked by the type system. On the other hand,
it is known among dependently-typed programmers that the expressiveness of
dependent types is far beyond proving that reverse preserves the length of its
input. We can reason about the full input/output specification, for example, that
fast-reverse is pointwise equal to the quadratic-time reverse, or that insertion
sort implements a relational specification of sort. The reason this is rarely done
is probably because it appears difficult to construct the proof terms. The method
we propose is to develop the proof by algebraic reasoning within Agda.

In Sect. 2 we give an introduction to the part of Agda we use. We present
our encoding of relations and their operations in Sect. 3, which prepares us to
discuss our primary example in Sect. 4 and conclude with related work in Sect. 5.

2 A Crash Course on Agda

By “Agda” we mean Agda version 2, a dependently typed programming lan-
guage evolved from the theorem prover having the same name. In this section
we give a crash course on Agda, focusing on the aspects we need. For a detailed
documentation, the reader is referred to Norell [17] and the Agda wiki [21].

Agda has a Haskell-like syntax extended with a number of additional features.
Dependent function types are written (x : A) → B where B may refer to the
identifier x , while non-dependent functions are written A → B . The identity
function, for example, can be defined by:

id : (A : Set)→ A→ A
id A a = a,



where Set is the kind of types. To apply id we should supply both the type and
the value parameters, e.g., id N 3 where N is the type of natural numbers. Depen-
dently typed programming would be very verbose if we always had to explicitly
mention all the parameters. In cases when some parameters are inferable from
the context, the programmer may leave them out, as in id 3.

For brevity, Agda supports implicit parameters. In the definition below:

id : {A : Set} → A→ A
id a = a,

the parameter {A : Set} in curly brackets is implicit and need not be mentioned
when id is called, e.g., id 3. Agda tries to infer implicit parameters whenever
possible. In case the inference fails, they can be explicitly provided in curly
brackets: id {N} 3.

Named parameters in the type signature can be collected in a telescope. For
example, {x : A} → {y : A} → (z : B) → {w : C} → D can be abbreviated to
{x y : A}(z : B){w : C} → D .

As an example of a datatype definition, cons-lists can be defined by:

data [ ] (A : Set) : Set where
[ ] : [A]
:: : A→ [A]→ [A].

In Agda’s notation for dist-fix definitions, an underline denotes a location for a
parameter. The type constructor [ ] takes a type and yields a type. The param-
eter (A : Set), written on the left-hand side of the colon, scopes over the entire
definition and is an implicit parameter of the constructors :: and [ ].

2.1 First-Order Logic

In the Curry-Howard isomorphism, types are propositions and terms their proofs.
Being able to construct a term of a particular type is to provide a proof of
that proposition. Fig. 2 shows an encoding of first-order intuitionistic logic in
Agda. Falsity is represented by ⊥, a type with no constructors and therefore no
inhabitants. Truth, on the other hand, can be represented by the type >, having
one unique term — a record with no fields. Disjunction is represented by disjoint
sum, while conjunction is denoted by product as usual: a proof of P ] Q can
be deducted either from a proof of P or a proof of Q , while a proof of P × Q
consists of proofs of both.

An implication P → Q is represented as a function taking a proof of P to a
proof of Q . We do not introduce new notation for it. The quantifier ∀ is encoded
as a dependent function which, given any x : A, must produce a proof of P x .
Agda provides a short hand forall x → P x in place of (x : A) → P x when A
can be inferred. To prove the proposition ∃A P , where P is a predicate on terms
of type A, one has to provide a witness w : A and a proof of P w . Given a term
of type ∃A P , the two functions witness and proof extract the witness and the
proof, respectively.



data⊥ : Set where

record> : Set where

data ] (P Q : Set) : Set where
inj1 : P → P ]Q
inj2 : Q → P ]Q

data × (P Q : Set) : Set where
, : P → Q → P ×Q

data∃ (A : Set) (P : A→ Set) : Set
where
exists : (w : A)→ P w → ∃A P

witness : {A : Set}{P : A→ Set} →
∃A P → A

witness (exists w p) = w

proof : {A : Set}{P : A→ Set} →
(x : ∃A P)→ P (witness x )

proof (exists w p) = p

Fig. 2. An encoding of first-order intuitionistic logic in Agda.

2.2 Identity Type

A term of type x ≡ y is a proof that the values x and y are equal. The datatype
≡ is defined by:

data ≡ {A : Set}(x : A) : A→ Set where
≡-refl : x ≡ x .

Agda has relaxed lexical rules allowing Unicode characters in identifiers. There-
fore, ≡-refl (without space) is a valid name. Since the only constructor ≡-refl is
of type x ≡ x , being able to type-check a term with type x ≡ y means that the
type checker is able to deduce that x and y are indeed equal4.

For the rest of the paper, we will exploit Unicode characters to give telling
names to constructors, arguments, and lemmas. For example, if a variable is a
proof of y ≡ z , we may name it y≡z (without space).

The type ≡ is reflexive by definition. It is also symmetric and transitive,
meaning that given a term of type x ≡ y , one can construct a term of type
y ≡ x , and that given x ≡ y and y ≡ z , one can construct x ≡ z :

≡-sym : {A : Set}{x y : A} → x ≡ y → y ≡ x
≡-sym ≡-refl = ≡-refl ,

≡-trans : {A : Set}{x y z : A} → x ≡ y → y ≡ z → x ≡ z
≡-trans ≡-refl y≡z = y≡z .

The type of the first explicit parameter in the type signature of ≡-sym is x ≡ y ,
while the constructor ≡-refl in the pattern has type x ≡ x . When the type
checker tries to unify them, x is unified with y . Therefore, when we need to
return a term of type y ≡ x on the right-hand side, we can simply return ≡-refl .
The situation with ≡-trans is similar. Firstly, x is unified with y , therefore the
parameter y≡z , having type y ≡ z , can also be seen as having type x ≡ z and

4 Agda assume uniqueness of identity proofs (but not proof irrelevance).



infixr 2 ∼〈 〉
infix 2 ∼�

∼〈 〉 : {A : Set}(x : A){y z : A} → x ∼ y → y ∼ z → x ∼ z
x ∼〈 x∼y 〉 y∼z = ∼-trans x∼y y∼z

∼� : {A : Set}(x : A)→ x ∼ x
x ∼� = ∼-refl

Fig. 3. Combinators for preorder reasoning.

be returned. In general, pattern matching and inductive families (such as ≡ )
is a very powerful combination.

The interactive feature of Agda5 is helpful for constructing the proof terms.
One may, for example, leave out the right-hand side as an interaction point.
Agda would prompt the programmer with the expected type of the term to fill in,
which also corresponds to the remaining proof obligations. The list of variables
in the current context and their types after unification are also available to the
programmer.

The lemma ≡-subst states that Leibniz equality holds: if x ≡ y , they are
interchangeable in all contexts. Given a context f and a proof that x ≡ y , the
congruence lemma ≡-cong returns a proof that f x ≡ f y .

≡-subst : {A : Set}(P : A→ Set){x y : A} → x ≡ y → P x → P y
≡-subst P ≡-refl Px = Px ,

≡-cong : {A B : Set}(f : A→ B){x y : A} → x ≡ y → f x ≡ f y
≡-cong f ≡-refl = ≡-refl .

2.3 Preorder Reasoning

To prove a proposition e1 ≡ e2 is to construct a term having that type. One can
do so by the operators defined in the previous section. It can be very tedious,
however, when the expressions involved get complicated. Luckily, for any binary
relation ∼ that is reflexive and transitive (that is, for which one can construct
terms ∼-refl and ∼-trans having the types as described in the previous section),
we can induce a set of combinators, shown in Fig. 3, which allows one to construct
a term of type e1 ∼ en in algebraic style. These combinators are implemented
in Agda by Norell [17] and improved by Danielsson in the Standard Library of
Agda [21]. Augustsson [3] has proposed a similar syntax for equality reasoning,
with automatic inference of congruences.

5 Agda has an Emacs mode and a command line interpreter interface.



foldr -fusion : {A B C : Set} → (h : B → C )→ {f : A→ B → B} →
{g : A→ C → C} → {z : B} → (push : forall a → h · f a

·
= g a · h)→

h · foldr f z
·
= foldr g (h z )

foldr -fusion h {f } {g} {z} [ ] = ≡-refl
foldr -fusion h {f } {g} {z} push (a :: as) =

let ih = foldr -fusion h push as in
h (foldr f z (a :: as))

≡〈 ≡-refl 〉
h (f a (foldr f z as))

≡〈 push a (foldr f z as) 〉
g a (h (foldr f z as))

≡〈 ≡-cong (g a) ih 〉
g a (foldr g (h z ) as)

≡〈 ≡-refl 〉
foldr g (h z ) (a :: as)

≡�

Fig. 4. Proving the fusion theorem for foldr .

To understand the definitions, notice that ∼〈 〉 , a dist-fix function taking
three explicit parameters, associates to the right. Therefore, the algebraic proof:

e1

∼〈 reason1 〉
...

en−1

∼〈 reasonn−1 〉
en

∼�

should be bracketed as e1∼〈reason1〉 . . . (en−1∼〈reasonn−1〉 (en∼�)). Each oc-
currence of ∼〈 〉 takes three arguments: ei on the left, reasoni (a proof that
ei ∼ ei+1) in the angle brackets, and a proof of ei+1 ∼ en on the right-hand
side, and produces a proof of ei ∼ en using ∼-trans. As the base case, ∼� takes
the value en and returns a term of type en ∼ en .

2.4 Functional Derivation

The ingredients we have prepared so far already allow us to perform some func-
tional program derivation. For brevity, however, we introduce an equivalence
relation on functions:

·= : {A B : Set} → (A→ B)→ (A→ B)→ Set
f ·= g = forall a → f a ≡ g a.

Since ·= can be shown to be reflexive and transitive, it also induces a set of pre-
order reasoning operators. Fig. 4 shows a proof of the foldr fusion theorem. The



scanr -der : {A B : Set} → (f : A→ B → B)→ (e : B)→
∃ ([A]→ List+ B) (\prog → map+ (foldr f e) · tails

·
= prog)

scanr -der f e = exists ( map+ (foldr f e) · tails
·
=〈 foldr -fusion (map+ (foldr f e)) (push-map-til f ) 〉

foldr (sc f ) [e]+

·
=�)

where sc : {A B : Set} → (A→ B → B)→ A→ List+ B → List+ B
sc f a [b]+ = f a b ::+[b]+

sc f a (b ::+bs) = f a b ::+ b ::+bs
push-map-til : {A B : Set} → (f : A→ B → B)→ {e : B} → (a : A)→

map+ (foldr f e) · til a
·
= sc f a ·map+ (foldr f e)

push-map-til f a [xs]+ = ≡-refl
push-map-til f a (xs ::+xss) = ≡-refl

Fig. 5. Derivation of scanr . The constructors ::+ and [ ]+ build non-empty lists,
while tails = foldr til [[]]+, where til a [xs]+ = (a::xs)::+[xs]+; til a (xs ::+xss) =
(a::xs) ::+xs ::+xss.

steps using ≡-refl are simple equivalences which Agda can prove by expanding
the definitions. The inductive hypothesis ih is established by a recursive call.
Agda ensures that proofs by induction are well-founded. Fig. 5 derives scanr
from its specification map+ (foldr f e) · tails, where map+ is the map function de-
fined for List+, the type of non-empty lists. The foldr -fusion theorem is used to
transform the specification to a fold. The derived program can be extracted by
scanr = witness scanr -der , while scanr -pf = proof scanr -der is a proof that can
be used elsewhere. Notice that the first argument to exists is left implicit. Agda
is able to infer the witness because it is syntactically presented in the derivation.

We have reproduced a complete derivation for the maximum segment sum
problem. The derivation proceeds in the standard manner [6], transforming the
specification to max ·map (foldr ⊗ 0)·tails for some ⊗ , and exploiting scanr -pf
to convert it to a scanr . The main derivation is about 220 lines long, plus 400
lines of library code proving properties about lists and 100 lines for properties
about integers. The code is available online [16].

The interactive interface of Agda proved to be very useful. One could progress
the derivation line by line, leaving out the unfinished part as an interaction point.
One may also type in the desired next step but leave the “reason” part blank,
and let Agda derive the type of the lemma needed.

3 Relational Derivation

During the 90’s there was a trend in the program derivation community to move
from functions to relations. For completeness, we give a quick introduction to
relations in this section. The reader is referred to Backhouse et al. [4] and Back-
house and Hoogendijk [5] for a more rigorous treatment. Bird and de Moor [8]



present program derivation from a more abstract, category-theoretical point of
view, with many illustrative examples of program derivation.

A relation R to B from A, denoted by R : B ← A, is usually understood
as a subset of the set of pairs A × B .6 A function f is seen as a special case
where (a, b) ∈ f and (a, b′) ∈ f implies b = b′. The use of relations allows
non-determinism in the specification. Derivation proceeds by inclusion as well as
equality: in each step, the specification may be refined to a more deterministic
subset, often all the way until we reach a function.

The composition of two relations R : C ← B and S : B ← A is defined by:
R ◦ S = {(a, c) | ∃b : (a, b) ∈ S ∧ (b, c) ∈ R}. Given a relation R : B ← A,
its power transpose ΛR is a function from A to PB (subsets of B): ΛR a = {b |
(a, b) ∈ R}, while the relation ∈ : A← PA maps a set to one of its arbitrary
members.

The fold remains an important construct in the relational setting. While
foldr takes a step function of type A → B → B and a base case of type B , its
relational counterpart, which we denote by foldR, takes an uncurried relation
R : B ← (A×B), while the base cases, being non-deterministic, are recorded in
a set s : PB .7 The relational fold can be defined in terms of functional fold:

foldR R s : B ← [A]
foldR R s = ∈ ◦ foldr Λ(R ◦ (id × ∈)) s.

We will see in the next few sections how these concepts can be modelled in Agda.

3.1 Modelling Relations

A possibly infinite subset (of A) could be represented by its membership function
of type PA = A → Bool . With dependent types, we can also represent the
membership judgement at type level:

P : Set → Set1
PA = A→ Set .

A set s : PA is a function mapping a : A to a type, which encodes a logic
formula determining its membership. Agda maintains a hierarchy of universes,
where Set denotes the universe of types, Set1 denotes the universe of Set and
all types declared as being in Set1, etc. Since s : PA is a function yielding a Set ,
PA is in the universe Set1. The function singleton creates singleton sets:

singleton : {A : Set} → A→ PA
singleton a = \a ′ → a ≡ a ′.

Set union and inclusion, for example, are naturally encoded by disjunction and
implication:
6 Notations used in the beginning of this section, for example ×, ∈, and set compre-

hension, refer to their usual set-theoretical definitions. We will talk about how they
can be represented in Agda in the next few subsections.

7 Isomorphically, the base case can be represented by a relation B ←>.



∪ : {A : Set} → PA→ PA→ PA
r ∪ s = \ a → r a ] s a,

⊆ : {A : Set} → PA→ PA→ Set
r ⊆ s = forall a → r a → s a.

A term of type r ⊆ s is a function which, given an a and a proof that a is in r ,
produces a proof that a is in s.

A relation B←A, seen as a set of pairs, could be represented as P(A×B) =
(A × B) → Set . However, we find the following “curried” representation more
convenient:

← : Set → Set → Set1
B ←A = A→ B → Set .

One of the advantages is that relations and set-valued functions are unified. The
Λ operator, for example, is simply the identity function at the term-level:

Λ : {A B : Set} → (B ←A)→ (A→ PB)
ΛR = R.

A function can be converted to a relation:

fun : {A B : Set} → (A→ B)→ (B ←A)
fun f a b = f a ≡ b.

The identity relation, for example, is denoted idR : {A : Set} → (A← A) and
defined by idR = fun id .

Relational composition could be defined by R◦S = ∃B (\b → (S a b×R b c)).
For reasons that will be clear in the next section, we split the definition into two
parts, shown in Fig. 6. The operator � applies a relation R : B ← A to a set
PA, yielding another set PB . Composition ◦ is then defined using � .

Complication arises when we try to represent ∈. Recall that ∈ maps PA to A.
However, the second argument to ← must be in Set , while PA is in Set1! At
present, we have no choice but to declare another type of arrows that accepts
Set1-sorted inputs:

←1 : Set → Set1→ Set1
B ←1 PA = PA→ B → Set .

It means we need several alternatives of relational composition that differ only
in their types. Fig. 6 shows ◦1 and 1◦ for example. Such inconvenience may
be resolved if Agda introduces universe polymorphism, a feature on the wish-list
at the time of writing. Also summarised in Fig. 6 are ˘ for relational converse,
and ×1 , a higher-kinded variation of the product functor.

3.2 Inclusion and Monotonicity

A relation S can be refined to R if every possible outcome of R is a legitimate
outcome of S . We represent the refinement relation by:

v : {A B : Set} → (B ←A)→ (B ←A)→ Set
R v S = forall a → R a ⊆ S a,



˘ : {A B : Set} → (A← B)→ (B ←A)
R˘ = \ a b → R b a

� : {A B : Set} → (B ←A)→ PA→ PB
R � s = \ b → ∃A (\a → (s a × R a b))

∈ : {A : Set} → (A←1 PA)
∈ = \pa a → pa a

◦ : {A B C : Set} → (C ← B)→ (B ←A)→ (C ←A)
(R ◦ S) a = R � (S a)

◦1 : {A : Set1}{B C : Set} → (C ← B)→ (B ←1 A)→ (C ←A)
(R ◦1 S) a = R � (S a)

1◦ : {A B C : Set} → (C ←1 PB)→ (B ←A)→ (C ←A)
(R 1◦S) a = R (S a)

×1 : {A B : Set}{PC : Set1}{D : Set} →
(B ←A)→ (D ←1 PC )→ ((B ×D)←1 (A×1 PC ))

(R ×1 S) (a,1 pc) (b, d) = R a b × S pc d

Fig. 6. Some operators on ← and ←1 relations, including composition, membership
and product. In this paper, ×1 is overloaded for the type of pairs whose right com-
ponent is in Set1 ( ,1 being the data constructor), and its functor action on relations
(defined in this figure).

which expands to forall a → forall b → R a b → S a b. Conversely, R w S = S v
R. Both v and w can be shown to be reflexive and transitive. Therefore, we can
use them for preorder reasoning.

In hand-written derivation, the monotonicity of ◦ (that is, S v T implies
R ◦ S v R ◦ T ) is often used without being explicitly stated. In our Agda
encoding where there are many versions of composition, it appears that we need
one monotonicity lemma for each of them. Luckily, since those alternatives of
composition are all defined in terms of � , it is enough to model monotonicity
for � only:

�-monotonic : {A B : Set} → (R : B ←A)→ {s t : PA} →
s ⊆ t → R � s ⊆ R � t

�-monotonic R s⊆t b (exists a1 (a1∈s, bRa1)) =
exists a1 (s⊆t a1 a1∈s, bRa1).

To refine R ◦ S ◦ T to R ◦ U ◦ T given U v S , for example, we may use
(\x → �-monotonic R (UvS (T � x ))) as the reason. It is instructive to study
the definition of �-monotonic. After taking R and s⊆t (a proof of s ⊆ t), the
function �-monotonic shall return a proof of R � s ⊆ R � t . The proof, given a
value b and a proof that some a1 in s is mapped to b through R, shall produce
a proof that there exists some value in t that is also mapped to b. The obvious



choice of such a value is a1. Notice how we apply s⊆t to a1 and a1∈s to produce
a proof that a1 is also in t .

Another lemma often used without being said is that we can introduce idR

anywhere we need. It can be proved using ≡-subst :

id -intro : {A B : Set}{R : B ←A} → R w R ◦ idR

id -intro { }{ }{R} a b (exists a ′ (a≡a ′, bRa ′)) =
≡-subst (\a → R a b) (≡-sym a≡a ′) bRa ′.

3.3 Relational Fold

Having defined all the necessary components, we can now define relational fold
in terms of functional fold:

foldR : {A B : Set} → (B ← (A× B))→ PB → (B ← [A])
foldR R s = foldr (R ◦1 (idR×1 ∈)) s.

On the top of the list of properties that we wish to have proved is, of course,
fold fusion for relational folds:

foldR-fusion : {A B C : Set} → (R : C ← B)→ {S : B ← (A× B)} →
{T : C ← (A× C )}{u : PB}{v : PC} →

R ◦ S w T ◦ (idR × R) → R � u ⊇ v →
R ◦ foldR S u w foldR T v .

The proof proceeds by converting both sides to functional folds. It is omitted
here for brevity but is available online [16]. To use fold fusion, however, there has
to be a fold to start with. Luckily, this is hardly a problem, given the following
lemma showing that idR, when instantiated to lists, is a fold:

idRwfoldR : {A : Set} → idR {[A]} w foldR cons nil ,

where cons = fun (uncurry :: ) and nil = singleton [ ]. Let us try to construct
its proof term. The inclusion idR {[A]} w foldR cons nil expands to:

forall xs ys → foldR cons nil xs ys → xs ≡ ys.

The proof term of idRwfoldR should be a function which takes xs, ys, and a
proof that foldR cons nil maps xs to ys, and returns a proof of xs ≡ ys. When
xs is [ ], foldR cons nil [ ] ys simplifies to [ ] ≡ ys, and we can simply return the
proof:

idRwfoldR [ ] ys []≡ys = []≡ys.

Consider the case a :: xs. The proposition foldR cons nil (a :: xs) ys expands to
∃ (V×[V ]) P , where P (a ′, as) = ((a ≡ a ′)×(foldR cons nil xs as))×(cons (a, as) ys).



Given a :: xs, ys, and a proof of ∃ (V × [V ]) P , we should construct a proof that
a :: xs ≡ ys. We can do so by equational reasoning:

idRwfoldR (a :: xs) ys (exists (a ′, as) ((a≡a ′, foldRxsas), a ′::as≡ys)) =
a :: xs

≡〈 a≡a ′ 〈::〉 (idRwfoldR xs as foldRxsas) 〉
a ′ :: as

≡〈 a ′::as≡ys 〉
ys

≡�,

where 〈::〉 is ≡-cong applied twice, substituting a for a ′ and xs for as.

4 Example: Deriving Insertion Sort

We are finally in a position to present our main example: a derivation of insertion
sort, adopted from Bird [7].

4.1 Specifying Sort

We first specify what a sorted list is, assuming a datatype Val and a binary
ordering ≤ : Val → Val → Set that form a decidable total order. To begin
with, let lbound be the set of all pairs (a, xs) such that a is a lower bound of xs:

lbound : P(Val × [Val ])
lbound (a, [ ]) = >
lbound (a, b :: xs) = (a ≤ b)× lbound (a, xs).

A coreflexive is a sub-relation of idR. The following operator ? converts a
set to a coreflexive, letting the input go through iff it is in the set:

? : {A : Set} → PA→ (A←A)
(p ?) a b = (a ≡ b)× p a.

The coreflexive ordered?, which lets a list go through iff it is sorted, can then be
defined as a fold:

ordered? : [Val ]← [Val ]
ordered? = foldR (cons ◦ lbound ?) nil .

We postulate a datatype Bag , representing bags of values. Bags are formed
by two constructors: *+ : Bag and ::b : Val → Bag → Bag . For the derivation
to work, we demand that the result of ::b be distinguishable from the empty
bag, and that ::b be commutative:8

::b -nonempty : forall {a w} → (*+ ≡ a ::b w)→ ⊥
::b -commute : (a b : Val)→ (w : Bag)→ a ::b (b ::b w) ≡ b ::b (a ::b w).

8 We can put more constraints on bags, such as that ::b discards no elements. But the
two properties are enough to guarantee that isort is included in ordered? ◦ permute.



The function bagify , defined below, converts a list to a bag by a fold:

bagify : [Val ]→ Bag
bagify = foldr ::b *+.

To map a list to one of its arbitrary permutations, we simply convert it to a bag,
and convert the bag back to a list! To sort a list is to find one of its permutations
that is sorted:

permute : [Val ]← [Val ]
permute = (fun bagify)˘ ◦ fun bagify ,

sort : [Val ]← [Val ]
sort = ordered? ◦ permute.

Thus completes the specification, from which we shall derive an algorithm that
actually sorts a list.

4.2 The Derivation

The derivation begins with observing that permute can be turned into a fold.
We first introduce an idR by id -intro, followed by the lemma idRwfoldR, and
fold fusion:

perm-der : ∃1 ([Val ]← [Val ]) (\perm → permute w perm)
perm-der = exists1 ( permute

w〈 id -intro 〉
permute ◦ idR

w〈 (\xs → �-monotonic permute (idRwfoldR xs)) 〉
permute ◦ foldR cons nil

w〈 foldR-fusion permute perm-step perm-base 〉
foldR combine nil

w�),

where ∃1 is a Set1 variant of ∃, with extraction functions witness1 and proof1.
The relation combine can be defined as follows:

combine : [Val ]← (Val × [Val ])
combine (a, xs) = cons (a, xs) ∪ combine ′ (a, xs),
combine ′ : [Val ]← (Val × [Val ])
combine ′ (a, [ ]) = \ys → ⊥
combine ′ (a, b :: xs) = (\zs → cons (b, zs)) � combine (a, xs).

Given (a, xs), it inserts a into an arbitrary position of xs. For the foldR-fusion
to work, we have to provide two proofs:

perm-step : permute ◦ cons w combine ◦ (idR × permute)
perm-base : permute � nil ⊇ nil .



But the real work is done in proving that shuffling the input list does not change
the result of bagify :

bagify-homo : (a : Val)→ (xs ys : [Val ])→
combine (a, xs) ys → bagify (a :: xs) ≡ bagify ys.

It is when proving this lemma that we need ::b -commute.
After the reasoning above, we have at our hands:

perm : [Val ]← [Val ]
perm = witness1 perm-der ,

permute-is-fold : permute w perm
permute-is-fold = proof1 perm-der .

Therefore, perm = foldR combine nil , while permute-is-fold is a proof that perm
refines permute.

Now that permute can be refined to a fold, a natural step to try is to fuse
ordered? into the fold. We derive:

sort-der : ∃ ([Val ]→ [Val ]) (\f → ordered? ◦ permute w fun f )
sort-der = exists

( ordered? ◦ permute
w〈 (\xs → �-monotonic ordered? (permute-is-fold xs)) 〉

ordered? ◦ perm
w〈 w-refl 〉

ordered? ◦ foldR combine nil
w〈 foldR-fusion ordered? ins-step ins-base 〉

foldR (fun (uncurry insert)) nil
w〈 foldR-to-foldr insert [ ] 〉

fun (foldr insert [ ])
w�).

The function insert follows the usual definition:
insert : Val → [Val ]→ [Val ]
insert a [ ] = a :: [ ]
insert a (b :: xs) with a ≤?b
. . . | yes a≤b = a :: b :: xs
. . . | no a 6≤b = b :: insert a xs,

where a ≤?b determines whether a ≤ b, whose result is case-matched by the
with notation. The fusion conditions are:

ins-step : ordered? ◦ combine w fun (uncurry insert) ◦ (idR × ordered?)
ins-base : ordered? � nil ⊇ nil .

Finally, foldR-to-foldr is a small lemma allowing us to convert a relational fold
to a functional fold, provided that its arguments have been refined to a function
and a singleton set already:

foldR-to-foldr : {A B : Set} → (f : A→ B → B)→ (e : B)→
foldR (fun (uncurry f )) (singleton e) w fun (foldr f e).



We have thus derived isort = witness sort-der = foldr insert [ ], while at the
same time proved that it meets the specification ordered? ◦permute. The details
of the proofs are available online [16]. The library code defining sets, relations,
folds, and their properties, amounts to about 800 lines. The main derivation of
isort is not long. Proving the fusion condition ins-step and its related properties
turned out to take some hard work and eventually adds up to about 700 lines
of code. The interactive mode was of great help — the proof would have been
difficult to construct by hand.

5 Conclusion and Related Work

We have shown how to encode relational program derivation in a dependently
typed language. Derivation is carried out in the host language, the correctness
being guaranteed by the type system. It also demonstrates that dependent types
are expressive enough to demand that a program satisfies an input/output rela-
tion. An interesting way to construct the corresponding proof term, which would
be difficult to build otherwise, is derivation.

McKinna and Burstall’s paper on “Deliverables” [15] is an early example of
machine checked program + proof construction (using Pollack’s LEGO). In their
terminology sort-der would be a deliverable — an element of a dependent Σ-type
pairing up a function and a proof of correctness. In the Coq tradition Program
Extraction has been used already from Paulin-Mohring’s early paper [18] to
the impressive four-colour theorem development (including the development of
a verified compiler). Our contribution is more modest — we aim at formally
checked but still readable Algebra-of-Programming style derivations.

The concept of Inductive Families [12], especially the identity type ( ≡ ),
is central to the Agda system and to our derivations. A recent development of
relations in dependent type theory was carried out by Gonzaĺıa [13, Ch. 5]. The
advances in Agda’s notation and support for hidden arguments between that
derivation and our work is striking.

There has been a trend in recent years to bridge the gap between dependent
types and practical programming. Projects along this line include Cayenne [2],
Coq [10], Dependent ML [23], Agda [17], Ωmega [19], Epigram [14], and the
GADT extension [9] to Haskell. It is believed that dependent types have an
important role in the next generation of programming languages [20].

Acknowledgements We are grateful to Nils Anders Danielsson for pointing out
typos and giving valuable suggestions regarding the presentation.
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