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Abstract—Session types are a type discipline for eliminating
communication errors in concurrent computing. These types
can be thought of as a representation of communication proto-
cols implemented by communicating processes. One application
scenario that can be naturally supported by session types is
semantics-preserving transformation of processes in response
to protocol changes due to optimization, evolution, refactoring,
etc. Such transformation can be seen as a particular kind of
synchronization problem that has long been studied by the
bidirectional transformations (BX) community. This short paper
offers a preliminary analysis of the process–type synchronization
problem in terms of BX, describing the prospects and challenges.

I. INTRODUCTION

The programming language community has a long tradition
of using strong type disciplines to statically rule out programs
with undesired behaviour, and concurrency is one of the areas
for which type disciplines have been particularly successful
in providing safety guarantees. A flourishing line of work is
session calculi and session types [1–3], which are a family of
concise languages and their type systems modelling message-
passing operations and protocols used in communicating pro-
cesses. Just like a type of an expression is an abstraction
of the range of values the expression may evaluate to, a
session typing (a definition of which is given in Section II)
of a process describes abstractly a communication protocol
implemented by the process, i.e., the order and types of
messages sent and received by the process (while disregarding
other aspects like what computation is performed by the
process to determine what messages to send). It then becomes
straightforward to determine whether multiple processes can
be safely executed concurrently by checking whether they
have compatible typings. Multiple variants of session type
systems have been developed, and provide varying levels of
safety guarantees, from the absence of mismatching sending
and receiving actions to deadlock freedom. There have been
implementations of session type systems for a wide range
of programming languages, including C, Java, Erlang, Go,
Haskell, and OCaml [4].

In this paper we will look at an application scenario that can
be naturally supported by session types: semantics-preserving
transformation of processes in response to protocol changes.
Here we are interested only in reasonable and non-disruptive
changes to a protocol—for example, merging two consecutive

sending actions into one to reduce the number of messages [5].
Correspondingly, we want to transform a process to conform to
the new protocol while retaining its behaviour—for example,
when transforming a process to send fewer messages, the
contents delivered by the messages should stay the same. Other
similar scenarios include protocol evolution (e.g., adding a new
authentication step) and refactoring (e.g., moving some func-
tionalities from one server to another). In all these scenarios,
existing programs have to be adapted to new protocols in a
semantics-preserving way, and an automated solution would
be immensely helpful in reducing programmer effort.

An important observation is that the above problem can be
seen more abstractly as a synchronization problem where a
process and a session typing are to be kept “synchronized”.
Here “being synchronized” means that the session typing
correctly describes a protocol implemented by the process.
Whenever the session typing changes, possibly breaking syn-
chrony, we should transform the process to a new one that
has the changed typing, re-establishing synchrony; likewise,
changes to processes should also be propagated to the typing
side. Synchronization problems of this kind have been sys-
tematically studied by the bidirectional transformations (BX)
community [6, 7]. There has been a large body of work on BX,
ranging from theoretical concepts and frameworks to practical
languages and tools for constructing automatic synchronizers,
and we conjecture that BX will be helpful in analysing the
problem and implementing a solution.

This short paper aims to give a preliminary analysis of
the problem of synchronizing communicating processes and
session types in terms of BX, describing the prospects and
challenges. This analysis will be offered in Section IV, before
which we will provide some background knowledge about
session types and BX respectively in Sections II and III.

II. A SIMPLE SESSION CALCULUS AND ITS TYPES

For presentation, we shall consider a simple session cal-
culus, focusing on session communication. We summarize the
syntax in Figure 1. With this syntax, any single communication
is always via a channel k. The syntax supports two kinds of
interaction via a channel: One is data sending and receiving,
the other label selecting and branching. Process k!〈e〉.P sends
the value of expression e via channel k, and then continues
as process P ; dually, the data-receiving process should have



P ::= k!〈e1, . . . , en〉.P data sending
| k?(x1, . . . , xn).P data receiving
| k J l.P label selecting
| k I{ l1 : P1 [] · · · [] ln : Pn } label branching
| if e then P1 else P2 conditional
| inact inaction

e ::= x variable
| n number
| e1 op e2 binary operation

Figure 1. Communicating processes

form k?(x).P , which receives a value via channel k and
binds it to variable x, and then continues as process P , in
which x may occur free. Process k J l.P sends label l via
channel k, and then continues as process P ; dually, process
k I{ l1 : P1 [] · · · [] ln : Pn } receives a label li among
l1, . . . , ln via channel k, and then continues as process Pi.
All communications are synchronous. Besides, we include the
standard conditional construct if-then-else and let inact denote
the lack of action.

As a concrete example, we can define the following process,
the addition/negation server:

k?(x).k I{ add : k?(y).k!〈x + y〉.inact
[] neg : k!〈0− x〉.inact }

This process first receives via channel k a number x and
one of the labels add and neg, then continues according
to the label received: If the label is add, the server still
needs another addend to finish the addition, so it will re-
ceive another number y and then send the sum of x and y
back; on the other hand, nothing else is required to find the
negation of x, so the server will simply send the negated
value back if the label received is neg. We can also define
two clients communicating with the addition/negation server:
k!〈42〉.k J add.k!〈43〉.k?(z).inact asks for the sum of 42 and
43, and k!〈42〉.k J neg.k?(z).inact the negation of 42.

Session types can ensure type-error and communication-
error freedom for session calculi. For our session calculus, we
introduce the session types as shown in Figure 2. The intuition
here is that a session type reflects the process’s behaviour in a
concise fashion. We formalize this idea with the typing rules
in Figure 3. In the type system, Γ is an environment that keeps
track of the types of variables, and ∆ a session typing, which
keeps track of the session types of channels. (That is, session
types are types of channels, and session typings are types of
processes.) And · is used to extend both environments and
session typings. There are two kinds of judgement: Γ ` e : S
is a judgement one would expect in a programming language’s
type system, and Γ ` P . ∆ is read as “under environment
Γ, channels to which process P refers are typed by ∆”. Each
typing rule in Figure 3 is read as “if all the judgements above
the line hold, then the judgement below also holds”.

T ::= ![S1, . . . , Sn];T data sending
| ?[S1, . . . , Sn];T data receiving
| ⊕ { l1 : T1, . . . , ln : Tn } label selecting
| & { l1 : T1, . . . , ln : Tn } label branching
| end inaction

S ::= num number
| bool boolean

Figure 2. Session types

Γ ` ei : Si (i = 1, . . . , n) Γ ` P . ∆ · k : T
SEND

Γ ` k!〈e1, . . . , en〉.P . ∆ · k : ![S1, . . . , Sn];T

Γ · x1 : S1 · · ·xn : Sn ` P . ∆ · k : T
RCV

Γ ` k?(x1, . . . , xn).P . ∆ · k : ?[S1, . . . , Sn];T

Γ ` P . ∆ · k : Ti SEL
Γ ` k J li.P . ∆ · k : ⊕{ l1 : T1, . . . , ln : Tn }

Γ ` Pi . ∆ · k : Ti (i = 1, . . . , n)
BR

Γ ` k I{ l1 : P1 [] · · · [] ln : Pn }
. ∆ · k : & { l1 : T1, . . . , ln : Tn }

Γ ` e : bool Γ ` P1 . ∆ Γ ` P2 . ∆
IF

Γ ` if e then P1 else P2 . ∆

INACT
Γ ` inact . ∆

Figure 3. Type system

One can see the duality of sending–receiving and label
selecting–branching actions in the definition of processes, and
this duality can be cleanly expressed in session types. Indeed,
a pair of processes that can communicate with each other
ought to have session typings that are dual to each other. For
example,

k : ?[num]; & { add : ?[num]; ![num]; end,

neg : ![num]; end }

and

k : ![num];⊕ { add : ![num]; ?[num]; end,

neg : ?[num]; end } (1)

are session typings of the addition/negation server and its
clients defined above, respectively. The converse is also true,
which is guaranteed by the type system. The type system does
not, however, guarantee some other important properties (such
as deadlock freedom) in concurrent computing.

As a final remark, the session calculus defined in this section
together with its session types is simplified, compared to
session calculi normally defined in the literature (e.g., Honda
et al.’s original paper [2]). The session calculus we consider
does not, for example, allow creation of new channels. All
channels used are presumed to be created beforehand and



universally accessible. Also, our session calculus forbids trans-
ferring channels from a process to another. This operation,
usually called delegation in session calculi, requires a different
treatment from data sending and receiving, and are thus omit-
ted to simplify the presentation. Finally, our session calculus
lacks constructs supporting recursion, making it impossible to
express some more realistic processes such as one that may
stay live and communicating with others forever.

III. BIDIRECTIONAL TRANSFORMATIONS (BX)

In this paper, we use specifically asymmetric lenses as our
model of bidirectional transformations. An asymmetric lens
consists of two unidirectional transformations: The forward
transformation, dubbed get , maps a set S to another set V ,
and the backward transformation, dubbed put , maps V × S
to S. Elements of S and of V are called sources and views,
respectively. The forward and backward transformations are
required to satisfy the two well-behavedness laws:

get(put(v, s)) = v (Correctness)
put(get(s), s) = s (Hippocraticness)

We can regard asymmetric lenses as solutions to a particular
kind of synchronization problem between sources and views.
In BX terminology, a (binary) synchronization problem is
specified by a consistency relation between two pieces of
data, and solved by synchronizers that, whenever one piece of
data changes, update the other to restore the consistency rela-
tion [8]. In the asymmetric setting, when the source changes,
we recompute the view with get to restore consistency; when
the corresponding view v of a source s has changed to v′,
the change in the view may be propagated back to the source
by put , that is, we obtain a new source s′ = put(v′, s). This
backward propagation should, of course, restore the source–
view consistency, which means that get(s′) = v′ should hold
and is guaranteed by the correctness law. When the change
in the view is nil, that is, v′ = v, there is nothing to be
propagated back. In this special case, we expect s′ = s, which
is guaranteed by the Hippocraticness law. Asymmetric lenses
can be seen as a framework for coping with synchronization
problems in which the consistency relation is functional [9],
which means that there cannot be multiple views consistent
with a single source. One important property of asymmetric
lenses and thus of this problem-solving framework is that there
is always at most one forward transformation with which an
arbitrary backward transformation can form an asymmetric
lens [10]. In other words, an asymmetric lens is determined
solely by put .

If we let sources be processes defined in Section II and
views session typings, the forward transformation should nat-
urally infer typings for processes. More importantly, when ses-
sion typings have been altered, the changes may be propagated
back to processes by the backward transformation. Asymmet-
ric lenses as a framework can thus offer a new means to reason
about process–type relationships.

IV. ANALYSIS OF THE SYNCHRONIZATION PROBLEM

We are ready to discuss the synchronization between
communicating processes and session types now. Below
let us consider two kinds of protocol change studied by
Sivaramakrishnan et al. [5] for reducing the number of mes-
sages.
• The first transformation is batching: Two (or more) consec-

utive sending actions on the same channel can be combined
into a single one that transmits all data at once. This
kind of protocol change can be described by changing the
type of the channel, for example, from ![num]; ![num];T to
![num, num];T .

• The second transformation is choice lifting: When a send-
ing action is followed by a label selecting action on the
same channel, the latter action can be performed first. For
example, typing (1) can be changed to:

k : ⊕{ add : ![num]; ![num]; ?[num]; end,

neg : ![num]; ?[num]; end }

Choice lifting by itself does not reduce the number of mes-
sages, but may lead to more opportunities for batching. For
example, in the add branch above, the originally separated
sending actions become adjacent and amenable to batching,
and we can further optimize the above typing to:

k : ⊕{ add : ![num, num]; ?[num]; end,

neg : ![num]; ?[num]; end } (2)

Sivaramakrishnan et al. approached the problem by analysing
the session typing of a process for optimization opportunities,
and then compiling the process to run on top of a runtime
system, which handles the actual communication with the
environment in accordance with the optimized protocol, and
relays the messages to the process in accordance with the
original protocol. With BX, we pursue a different approach:
We will construct a synchronizer to modify the process to
follow the optimized protocol directly. This approach can
help to avoid the cost and complication of a runtime system,
eliminate the need to maintain the old process that follows the
original protocol, and offer correctness guarantees (BX well-
behavedness in particular). On the other hand, since this kind
of transformation changes the protocol, we have to modify
(the code of) all processes involved, which may or may not
be possible. For example, after optimizing the client typing
to (2), we also need to invoke the synchronizer on the server
and the dual typing of (2)

k : & { add : ?[num, num]; ![num]; end,

neg : ?[num]; ![num]; end }

so that the server and clients can keep working together.
Let us assume that the synchronizer we are going to

construct is an asymmetric lens, for which the source set
is processes and the view set is session typings. (We will
revisit this assumption at the end of this section.) It suffices to
consider the put direction of this lens, which takes a (possibly
optimized) session typing and a process as input and returns a



transformed process. Sometimes what the put transformation
does can be straightforward—for example, when the view is

∆ · k : ![num, num];T (3)

and the source is
k!〈42〉.k!〈43〉.P (4)

(for some k, P , ∆, and T ), then it is clear that we should
perform a batching to transform the source into k!〈42, 43〉.P ,
and then continue to synchronize P with ∆ · k : T .

However, processes in general have more complicated struc-
tures than session types, and we should be able to deal with
patterns other than direct correspondences like the above one.
For example, given the same view (3), the source that we want
to synchronize may instead be

k!〈42〉.if b then k!〈43〉.P1 else k!〈44〉.P2

In this case, we should first distribute k!〈42〉 into the two
branches of the if-expression

if b then k!〈42〉.k!〈43〉.P1 else k!〈42〉.k!〈44〉.P2

before we can perform batching on both branches and go
on to transform P1 and P2. This distribution of sending
operations into branches of if-expressions is also important
for choice lifting, since processes usually make label selections
dynamically with if-expressions. For example, given a source

k!〈42〉.if b then k J l1.P1 else k J l2.P2

and its view

∆ · k : ![num];⊕{ l1 : T1, l2 : T2 }

which is changed to

∆ · k : ⊕{ l1 : ![num];T1, l2 : ![num];T2 }

we see that what we need to perform is a choice lifting,
which is done essentially by swapping the order of k!〈. . .〉 and
k J . . . , but this swapping cannot take place before k!〈42〉 is
distributed into the branches of the if-expression. When we
scale up and try to deal with more realistic process languages,
we will need more auxiliary transformations of this kind, and
these auxiliary transformations will be more complicated.

There is another more aggressive kind of auxiliary trans-
formation that we can consider but must be more cautious
about: rearranging actions on different channels. Consider
batching again. Given the source

k!〈42〉.k′?(x).k!〈43〉.P1 (5)

and the view (3), it might be tempting to swap k!〈42〉 with
k′?(x) so that the former can be merged with k!〈43〉. But this
may be too aggressive since the swapping may not be able to
be propagated to other processes—this process may interact
with, say, the following process

k?(x).k′!〈x〉.k?(y).P2

in which we cannot swap the corresponding receiving and
sending operations. This example reveals two problems: First,

an invocation of the synchronizer may not succeed—we have
seen that, with the same view (3), the synchronizer can succeed
for source (4) but not source (5). Therefore we need to
switch to a revised definition of well-behaved lenses that takes
partiality into account [11], and to make the behaviour of the
synchronizer predictable, we should give a characterization of
the synchronizer’s domain, i.e., those pairs of source and view
the synchronizer can successfully handle. Second, multiple
invocations of the synchronizer to bring a set of processes
to follow a new protocol must be coordinated to achieve more
aggressive transformations. In the example above, if we know
that there is no dependency between the receiving and sending
actions in the other process, then we can perform the swapping
on both processes. This will complicate the characterization of
the synchronizer’s domain though.

All these transformations should preserve the original func-
tionality of the process in some sense; formally stating this
preservation turns out to be another interesting problem.
Preservation in general is some kind of equivalence—we want
to say that the original and transformed processes have the
same behaviour in some suitable sense. The usual way to
say two processes have the same behaviour is the notion of
bisimulation [12], which basically says that both processes
can continue to match each other’s moves with identical
moves. This is too strong in our case, however, since batching,
choice lifting, and rearranging actions on different channels
all make a transformed process send and receive messages in
a different way from the original process. We thus need to
explore a weaker version of bisimulation, and prove that the
synchronizer establishes this weaker bisimulation between the
original and transformed processes.

Finally, let us get back to the assumption that the synchron-
izer is an asymmetric lens. As we explained in Section III, to
use an asymmetric lens to solve a synchronization problem, the
consistency relation should be functional. For our particular
synchronization problem, this means that every process has at
most one typing. However, this is not the case for the standard
typing relation (Figure 3). For example, the process k J l.inact
can have any typing of the form ∆ · k : ⊕{ l : end, . . . }.
Here are some possible ways out: We can enrich the syntax
of session types such that it is capable of expressing “most
general types”, which are types that can be specialized to any
other types that a channel can have; this will complicate the
type structure, though. We can insist that a process can only
have a “most precise” typing with no redundant information—
k : ⊕{ l : end } for the example above; this, however, will
require the introduction of subtyping. We can instead treat
the synchronization problem as a symmetric one [13, 14],
where the consistency relation does not need to be functional;
however, bidirectional programming in the symmetric setting
is much less explored, with the most reliable way still being
constructing a symmetric lens in terms of two or more
asymmetric lenses [15, 16], which can be cumbersome. Some
initial experiments will be necessary for determining which is
the best way to go.
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