
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Benchmarking Bidirectional Transformations: Theory,
Implementation, Application, and Assessment

Anthony Anjorin · Thomas Buchmann · Bernhard Westfechtel · Zinovy

Diskin · Hsiang-Shang Ko · Romina Eramo · Georg Hinkel · Leila

Samimi-Dehkordi · Albert Zündorf

Received: date / Accepted: date

Abstract Bidirectional transformations (bx) are rele-

vant for a wide range of application domains. While bx

problems may be solved with unidirectional languages

and tools, maintaining separate implementations of for-

ward and backward synchronizers with mutually con-

sistent behavior can be difficult, laborious, and error-

prone. To address the challenges involved in handling

This paper is an extended version of work by Anjorin et al. [4].
We would like to thank Erhan Leblebici and our anonymous
reviewers for their useful input and suggestions.

Anthony Anjorin
Paderborn University, Germany
E-mail: anthony.anjorin@upb.de

Thomas Buchmann
University of Bayreuth, Germany
E-mail: thomas.buchmann@uni-bayreuth.de

Bernhard Westfechtel
University of Bayreuth, Germany
E-mail: bernhard.westfechtel@uni-bayreuth.de

Zinovy Diskin
McMaster University, Hamilton, Ontario, Canada
E-mail: diskinz@mcmaster.ca

Hsiang-Shang Ko
National Institute of Informatics, Tokyo, Japan
E-mail: hsiang-shang@nii.ac.jp

Romina Eramo
University of L’Aquila, Italy
E-mail: romina.eramo@univaq.it

Georg Hinkel
Wiesbaden, Germany
E-mail: georg.hinkel@gmail.com

Leila Samimi-Dehkordi
MDSE Research Group, University of Isfahan, Iran
E-mail: samimi@eng.ui.ac.ir

Albert Zündorf
University of Kassel, Germany
E-mail: zuendorf@uni-kassel.de

bx problems, dedicated languages and tools for bx have

been developed. Due to their heterogeneity, however,

the numerous and diverse approaches to bx are difficult

to compare, with the consequence that fundamental dif-

ferences and similarities are not yet well understood.

This motivates the need for suitable benchmarks that

facilitate the comparison of bx approaches.

This paper provides a comprehensive treatment of

benchmarking bx, covering theory, implementation, ap-

plication, and assessment. At the level of theory, we in-

troduce a conceptual framework that defines and classi-

fies architectures of bx tools. At the level of implemen-

tation, we describe Benchmarx, an infrastructure for

benchmarking bx tools which is based on the concep-

tual framework. At the level of application, we report on

a wide variety of solutions to the well-known Families-

to-Persons benchmark, which were developed and com-

pared with the help of Benchmarx. At the level of as-

sessment, we reflect on the usefulness of the Benchmarx

approach to benchmarking bx, based on the experiences

gained from the Families-to-Persons benchmark.

Keywords Bidirectional transformation · Bench-

mark · Model synchronization · Framework

1 Introduction

Bidirectional transformations (bx) are mechanisms for

specifying and maintaining consistency between two or

more artifacts.1 Bx have been studied in many areas,

including model-driven software development, graphi-

cal user interfaces, and transformations between het-

erogeneous data formats [12].

1In this paper we consider only the case of two artifacts.



2 Anthony Anjorin et al.

While bx problems may be solved using unidirec-

tional languages and tools, maintaining a separate im-

plementation of different synchronizers with mutually

consistent behavior can be difficult, laborious, and error-

prone. In an attempt to better address bx-specific chal-

lenges, a variety of dedicated languages and tools for

bx have been developed to assist software developers

in solving bx problems more efficiently and reliably.

Indeed, a wide spectrum of bx approaches has been

reported in the literature, for example, by Hidaka et

al. [26], who provide a detailed, feature-based classifi-

cation of numerous bx approaches and tools.

Due to their substantial heterogeneity, however, bx

tools are difficult to compare with the consequence that

fundamental differences and commonalities are still not

well understood. This situation hinders the develop-

ment of better bx tools that combine the strengths and

avoid the weaknesses of existing tools. To promote the

understanding of bx languages and tools, therefore, the

need for bx benchmarks was identified early [12].

As a first step towards this goal, a curated reposi-

tory of bx examples was set up and is continuously being

extended [10]. Subsequently, a proposal for additional

requirements that a bx example must fulfill to become a

bx benchmark was made [3]. Contrary to expectations,

however, these preparatory activities and proposal did

not result in any actual bx benchmarks. We claim this

is due to additional and substantial practical challenges

involved in setting up a bx benchmark that can be im-

plemented with and executed for diverse bx tools.

This paper provides a comprehensive treatment of

benchmarking bx, covering theory, implementation, ap-

plication, and assessment. At the level of theory, we

introduce a conceptual framework which defines and

classifies architectures of bx tools in terms of their in-

put and output data, the basic operations from which

bx are composed, as well as their composition into dif-

ferent processing chains. The conceptual work is crucial

to understand the landscape of bx tools and languages,

and constitutes an essential prerequisite for developing

an infrastructure for benchmarking heterogeneous bx

tools.

At the level of implementation, we describe Bench-

marx [4], an infrastructure for benchmarking bx tools

based on the conceptual framework mentioned above.

In particular, Benchmarx takes the heterogeneity of bx

tools into account by abstracting from technological

spaces, specific tool architectures, and the internal data

maintained by the tools. A benchmark for a specific bx

problem is implemented by providing a suite of test

cases. A solution which is realized in a specific bx tool

can be executed and evaluated using the provided test

suite. Furthermore, the interpretation of test results is

supported by identifying a set of tool features required

by bx tests, thus allowing for a fine-grained classifica-

tion into expected and unexpected passed and failed

test cases. This enables a fair evaluation of specialized

bx tools that can never pass all tests.

At the level of application, we report on a wide vari-

ety of solutions to the well-known Families-to-Persons

benchmark, which were developed and compared with

the help of the Benchmarx infrastructure. The Families-

to-Persons benchmark, originally proposed as part of

the ATL [33] transformation zoo,2 involves synchroniz-

ing a database of families consisting of mother, father,

daughters, and sons, with a database containing a set

of unconnected male and female persons with birth-

days that cannot be inferred from the families database.

While being small and implementable with acceptable

effort, this case poses a number of challenges to be ad-

dressed by bx tools implementing the case. To solicit a

wide range of solutions, we submitted the Families-to-

Persons benchmark as a case description to the Trans-

formation Tool Contest 2017 (TTC 2017) [2]. For this

paper, we selected seven solutions in significantly dif-

ferent bx tools: BiGUL [35], BXtend [6], eMoflon [38],

EVL+Strace [46], JTL [11], NMF [29], and SDMLib.3

At the level of assessment, we reflect on the use-

fulness of the Benchmarx approach to benchmarking

bx, based on comprehensive experiences gained from

the Families-to-Persons benchmark. These experiences

support the following claims:

Claim 1 The Benchmarx infrastructure supports the

implementation of benchmarks to be executed by het-

erogeneous bx tools, which differ with respect to techno-

logical spaces, tool architectures, bx paradigms, and bx

languages.

Claim 2 The Benchmarx infrastructure is based on a

conceptual framework that allows for a balanced inter-

pretation of evaluation results, taking the heterogeneity

of bx tools into account.

Claim 3 Comparing different solutions for the same

benchmark problem assists in understanding the funda-

mental differences between bx approaches.

The rest of this paper is structured as follows (Fig. 1):

Section 2 defines the terminology used throughout this

paper. Section 3 introduces the Families-to-Persons case,

used as running example in all subsequent sections. Sec-

tion 4 provides the conceptual foundations for our work.

2http://www.eclipse.org/atl/atlTransformations/

#Families2Persons
3www.sdmlib.org

http://www.eclipse.org/atl/atlTransformations/#Families2Persons
http://www.eclipse.org/atl/atlTransformations/#Families2Persons
www.sdmlib.org


Benchmarking Bidirectional Transformations 3

Sections

1. Introduction

2. Basic terminology

3. Benchmark problem

4. Foundations: Bx tool architectures

5. The Benchmarx infrastructure

6. Description of benchmark solutions

7. Evaluation of benchmark solutions

8. Assessment of the Benchmarx approach

9. Related work

10. Conclusions and future work

Contributions

Theory

Implementation

Application

Assessment

Fig. 1 Structure of the paper

Section 5 describes the design of the Benchmarx frame-

work. The solutions to the Families-to-Persons bench-

mark are presented in Sect. 6, together with an intro-

duction and classification of the bx tool used to im-

plement each solution. A comparison and evaluation of

these solutions follows in Sect. 7. An assessment of the

Benchmarx approach is performed in Sect. 8. Section 9

discusses related work. Section 10 concludes the paper.

Figure 1 also maps the core sections of this paper

to the levels of our contribution. Depending on research

interests, the paper may be read either completely or

selectively, focusing on specific sections. For example,

readers interested in theory may focus on Sect. 4, read-

ers who want to get an overview of the Benchmarx

infrastructure and the value of using it may consult

Sect. 5 and Sect. 8, and application-oriented readers

may work through Sect. 3, Sect. 6, and Sect. 7.

2 Basic terminology

This section provides brief definitions for basic notions

to be used throughout this paper. Additional, more spe-

cific terms will be introduced in detail in Sect. 4. All no-

tions are collected together in a glossary (Appendix A).

For a more comprehensive terminology and taxonomy

for the domain of bx, the reader is referred to, e.g.,

Hidaka et al. [26].

2.1 Artifacts

Bidirectional transformations have been studied in a

wide range of application domains. The artifacts ma-

nipulated by them include, e.g., data stored in databases,

program data, and models. Throughout this paper, we

will adopt terminology from model-driven software en-

gineering [13] and refer to all artifacts as models.

A model is an abstraction of a system under study,

which is more suitable than the system itself for cer-

tain purposes. A metamodel is a model that defines the

structure of a set of models, i.e., a modeling language.

For metamodeling, we employ Ecore — which is

similar to Essential MOF (EMOF), a subset of MOF [44],

provided by the Eclipse Modeling Framework (EMF) [49].

Although we present the Families-to-Persons benchmark

using Ecore (Sect. 3), bx tools do not have to be EMF-

based to be able to implement the benchmark.

2.2 Transformations

A transformation reads, creates, or changes a set of

n ≥ 1 models. A transformation definition is a program

that controls the execution of a transformation.

A bidirectional transformation (bx) is a transforma-

tion that maintains consistency between a source model

and a target model. The terms source model and tar-

get model are used to distinguish between the models

involved in a bidirectional transformation; they do not

imply a specific transformation direction.

2.3 Synchronization

The act of executing a bidirectional transformation with

the intent of establishing or maintaining consistency is

denoted as synchronization. Synchronizations may be

classified along different dimensions.

A directed synchronization operates on a master and

a dependent model, and is said to maintain consistency

in the direction of the dependent model. The master

model is read, and the dependent model is created or

changed to make it consistent with the master model.

Required input for the synchronization can include the

old master model, the exact changes applied to the mas-

ter model, as well as preferences for making decisions

during the synchronization process. A forward synchro-

nization is a directed synchronization in the direction

of the target model; a backward synchronization is per-

formed in the opposite direction.

In contrast to a directed synchronization, both par-

ticipating models have equal rights in a concurrent syn-



4 Anthony Anjorin et al.

chronization. Thus, both source and target models may

be changed to establish or maintain consistency.

A batch synchronization is a directed synchroniza-

tion that creates the dependent model from scratch. In

contrast, an incremental synchronization — which may

be directed or concurrent — modifies an existing model.

A view-based synchronization is performed between

a model and a view (an abstraction of the model that

may be fully computed from the model). If neither model

is a view of the other, the synchronization is symmetric.

An interactive synchronization is partially controlled

by user interactions performed during the synchroniza-

tion. An automatic synchronization can be run without

any user interaction.

Finally, synchronization may be performed only on-

demand, i.e., on explicit user request (e.g., via a ded-

icated synchronization command) or implicit user re-

quest (e.g., by saving a model to trigger synchroniza-

tion implicitly). In contrast, live synchronization is per-

formed immediately after each elementary change.

2.4 Consistency and bx laws

A pair of source and target models is consistent if both

models agree on shared information. Consistency may

be defined formally by a consistency relation — a rela-

tion that includes all pairs of related source and target

models that satisfy some consistency condition. A con-

sistency relation is deterministic in the forward direc-

tion if there is at most one consistent target model for a

given source model; likewise for the backward direction.

A bx law is a condition on the behavior of bidirec-

tional transformations. The notion of a bx law is very

strong: A bx language/tool satisfies a bx law only if

the law is guaranteed to hold for every bidirectional

transformation written in the respective language and

executed in the respective tool. A number of bx laws

have been proposed in the literature. In the following,

we mention a few that are particularly relevant in the

context of this paper. The reader should note that bx

laws may be specific to certain classes of bx approaches

and cannot be sensibly applied to all other approaches.

A bidirectional transformation is correct if it pro-

duces consistent pairs of related models, and hippocratic

if it does not change models which are already mutually

consistent [50].

If the consistency relation is non-deterministic, the

correctness property does not determine the result of a

bidirectional transformation in a unique way. In such

cases, the principles of least change and least surprise

aim at further determining desirable synchronization

behavior. A least change transformation [40] restores

consistency such that the changed model has a minimal

distance to the original model (with respect to a suit-

ably defined metric). A least surprise transformation

[9] behaves as closely as possible to users’ expectations.

A round-trip law states a property that refers to

a round trip of directed synchronizations performed in

sequence. For view-based synchronization, for example,

an immediate recreation of the view must have no effect

after a view update has been propagated to the model,

and writing back an unmodified view must not change

the model [21].

There are two more properties which are relevant for

this paper: A bidirectional transformation terminates

if its execution halts after a finite number of steps. Fi-

nally, a bidirectional transformation is complete if it has

a well-defined domain on which it may be successfully

executed. Completeness is of practical relevance as some

bx tools apply search-based heuristics that might not

guarantee successful execution on all possible inputs.

2.5 Bx tools

A bx tool is a tool for managing bidirectional transfor-

mations. It may be based on a bx language, a domain-

specific language for defining (programming) bidirec-

tional transformations.

The consistency relation which a bx tool is supposed

to maintain may be defined either explicitly or implic-

itly. An explicit definition may be given, e.g., by a set

of constraints on pairs of related models [43], or by a

grammar [48] generating all consistent pairs of related

models. In contrast, an underlying consistency relation

may be implied only implicitly by the steps required to

establish or maintain consistency.

A bx tool may support different kinds of synchro-

nization, according to the taxonomy introduced in Sect.

2.3. Synchronization may be controlled either explicitly,

by programming the steps to be executed for restoring

consistency, or implicitly, by deriving the steps auto-

matically from other artifacts; forward (backward) syn-

chronization may be derived from backward (forward)

synchronization, or both directions may be derived from

an explicit consistency relation.

For model synchronization, a bx tool must in some

way process changes between (old and new) model ver-

sions. Here, the term version denotes a state of an

evolving model at a specific point in time, defined by the

model’s contents. The general term change subsumes

any modification of the state of a model. A change may

be represented by a delta, i.e., a difference between two

versions of the same model. Deltas may be classified fur-

ther into structural deltas, which are defined in terms



Benchmarking Bidirectional Transformations 5

of structural elements contained in both or only one of

two model versions, and operational deltas, which are

composed of sequences of change operations applied to

transition from an old to a new version of some model.

A bx tool may provide well-behavedness guarantees,

i.e., it may guarantee bx laws; see Sect. 2.4. Here, the

term “guarantee” must be used with caution: The re-

spective bx law must hold for each execution of each

transformation definition. For example, a tool support-

ing view-based synchronization may guarantee round-

trip laws, either by composing the transformation from

well-behaved bidirectional primitives [21], or by deriv-

ing one directed synchronization from its opposite [35].

Finally, bx tools may be classified according to their

underlying architecture. The architecture of a bx tool

is composed of (i) its external interface, defined by re-

quired inputs and provided outputs, and (ii) its internal

processing, defined by processing steps and their orga-

nization; this is handled in detail in Sect. 4.

2.6 Benchmarks

Generally speaking, a benchmark is a standardized test

that serves as a basis for comparison or evaluation.4

More specifically, a bx benchmark is a benchmark tai-

lored to the domain of bidirectional transformations.

As mentioned already in the introduction (Sect. 1), our

work targets comparison rather than evaluation, i.e.,

we are more interested in comparing bx tools and so-

lutions implemented in these tools, rather than in an

evaluation with the goal of identifying the “best” tool

or solution. We use three criteria for comparison: con-

ciseness (measured in terms of the size of a solution),

conformance (measured in terms of failed and passed

test cases), and performance, measured in the runtime

required for executing scalability test cases.

3 The Families-to-Persons benchmark problem

In the Families-to-Persons benchmark, two related, but

differently structured models have to be kept consistent:

A families model with parents and children, and a per-

sons model containing a flat set of males and females.

Using the terminology introduced in the previous sec-

tion, we present in this section the TTC 2017 variant

of the Families-to-Persons case [2,54], which forms the

basis of the benchmark reported in this paper.

4Merriam-Webster 2013

FamilyRegister

Family

name : String

FamilyMember

name : String

father
0..1

mother
0..1

sons
0..*

daughters
0..*

families
0..*

PersonRegister

Person

name : String
birthday : Date

persons
0..*

Male Female

Fig. 2 Metamodels

3.1 Metamodels and consistency

Figure 2 depicts Ecore-based metamodels for families

and persons models, respectively. Ecore-based bx tools

implementing the benchmark may use these metamod-

els directly. As the Benchmarx framework hides models

behind data abstraction interfaces, any equivalent def-

inition suitable for an implementing tool may be used

instead (e.g., algebraic data types in Haskell as required

for BiGUL).

We assume a unique root in each model (a family

and a person register, respectively). A family register

stores an unordered collection of families. Each family

has members who are distinguished by their roles. The

metamodel permits at most one mother and at most

one father as well as an arbitrary number of daughters

and sons. A person register maintains a flat unordered

collection of persons who have a birthday and are ei-

ther male or female. Note that key (combinations of)

properties cannot be assumed in either model: There

may be multiple families with the same name, family

members with the same name even within a single fam-

ily, and multiple persons with the same name and even

the same birthday.

A families model is consistent with a persons model

if a bijective mapping between family members and per-

sons can be established such that:

1. Mothers and daughters (fathers and sons) are paired

with females (males).

2. The name of every person p is “f.name, m.name”,

where m is the member (in family f) paired with p.

An example of mutually consistent models, conform-

ing to the metamodels in Fig. 2, is depicted as an ob-

ject diagram in Fig. 3. The consistency relation between

families models and persons models is non-deterministic

in both directions: For a given families model, there are



6 Anthony Anjorin et al.

fr : FamilyRegister pr : PersonRegister

fm2 : FamilyMember

name = "Mary"

mother

fm4 : FamilyMember

name = "Katie"

daughters

fm3 : FamilyMember

name = "Kevin"

sons

fm1 : FamilyMember

name = "John"

father
f1 : Family

name = "Smith"

families
p1 : Male

name = "Smith, John"
birthday = "1979‐11‐08"

persons

fm5 : FamilyMember

name = "John"

father
f2 : Family

name = "Smith"

families

fm6 : FamilyMember

name = "Claire"

mother
f3 : Family

name = "Miller"

families

p2 : Female

name = "Smith, Mary"
birthday = "1980‐07‐23"

persons

p3 : Male

name = "Smith, Kevin"
birthday = "2007‐06‐13"

persons

p4 : Female

name = "Smith, Katie"
birthday = "2005‐12‐12"

persons

p5 : Male

name = "Smith, John"
birthday = "1968‐05‐07"

persons

p6 : Female

name = "Smith, Claire"
birthday = "1970‐04‐03"

persons

Fig. 3 Example of mutually consistent models

multiple consistent persons models (birthdays may be

chosen arbitrarily). Conversely, a given persons model

is consistent with multiple families models (due to dif-

ferent groupings into families and different roles, e.g.,

a female person can correspond to either a mother or

daughter).

3.2 Synchronization

3.2.1 Properties of synchronization

The Families-to-Persons case is symmetric [15], i.e., nei-

ther model is a strict view of the other and information

loss may occur in both transformation directions. We

consider only directed synchronization, assuming that

changes have been applied to the master model, while

the dependent model has not been changed at all or

the changes do not affect the consistency relation (e.g.,

changes of birthdays in the persons model are allowed).

We cover both batch synchronization, where the de-

pendent model is created from scratch, and incremental

synchronization, where the dependent model is changed

to maintain consistency with the master model. Finally,

changes are provided to the tools indirectly via an or-

dered5 sequence of change operations referred to as ed-

its. These properties describe how the benchmark is de-

signed but do not, however, prescribe the architecture

5The results of some test cases depend on the order of
elementary change operations.

of a bx tool that can be used to implement the bench-

mark (see Sect. 4). For example, a bx tool can apply the

provided edits and decide either to record operational

deltas, structural deltas, or just to use only the old and

new versions of the model.

3.2.2 Bx laws

For the purpose of benchmarking, all bx laws are con-

sidered as properties which may be satisfied or not. We

test whether these laws hold for two reasons: First, a

specific bx tool may not be designed to guarantee a

certain bx law. Second, even if the tool has been de-

signed to guarantee some law, its implementation may

still contain faults, which can result in failing test cases.

From the bx laws introduced in Sect. 2.4, the bench-

mark takes correctness into account by the design of the

test cases: All test cases check for consistency by requir-

ing a dependent model that is consistent with the mas-

ter model. Similarly, termination and completeness are

considered implicitly, as a violation of these properties

would result in failing test cases. Finally, a few test cases

of the benchmark explicitly address hippocraticness by

performing updates that do not affect consistency, re-

spectively, to the master model.

Several variants of round-trip laws have been pro-

posed in the literature. In the symmetric bx case consid-

ered in the Families-to-Persons benchmark, two round-

trip laws are required to hold: If the backward (for-

ward) transformation is executed immediately after the



Benchmarking Bidirectional Transformations 7

forward (backward) transformation, the source model

(target model) must not be changed. These laws are

not tested explicitly because they are implied in the

case of correct and hippocratic synchronizers.

In the design of all test cases, we generally assume

compositionality of changes: The effect of the synchro-

nization of a composite change is reduced to the com-

position of the effects of elementary changes. This cor-

responds to the put-put law for delta lenses, as intro-

duced in [16]. Furthermore, we take the principles of

least change and least surprise into account.

Unfortunately, the expected behavior of a synchro-

nizer may not be derived in a unique way by apply-

ing bx laws. In particular, this applies to the backward

transformation, which is highly non-deterministic. To

resolve non-determinism (which complicates automatic

testing and is often not desirable in practice), we de-

scribe the expected behavior explicitly and uniquely,

taking bx laws into account. The description is infor-

mal, yet (hopefully) sufficiently precise (see below).

3.2.3 Synchronization behavior

In the following, we discuss the expected synchroniza-

tion behavior for a series of “small” changes grouped ac-

cording to model element (family, family member, per-

son, . . . ) and then according to a limited set of change

types (create, delete, update, move). This overview is

sufficient to provide a high-level intuition for the bench-

mark. The actual test cases of course combine different

changes and are more involved. However, the behav-

ior of composite changes is induced by the behavior of

elementary changes (see above).

Forward synchronization: In the forward direction, the

persons model must be manipulated to be consistent

with the changed families model. Defining the expected

synchronization behavior is straightforward because the

families model is determined uniquely, with the excep-

tion of birthday attributes. To resolve non-determinism,

we require that a default value be assigned as the birth-

day of a newly created person. With this resolution,

forward synchronization is deterministic.

Changes to families should be processed as follows:

Creation: New families can be created and must be

inserted into the family register. This has no effect

on the target model, which should not be changed.

Deletion: A family can be deleted together with all

its family members. All persons corresponding to

the deleted family members should be deleted.

Update: A family can be renamed. All persons cor-

responding to the family members in the renamed

family should be renamed accordingly.

Move: Families cannot be moved as there is only a

single family register and the collection of families

is unordered.

Changes to family members should be processed in the

following manner:

Creation: New family members can be created and

must be immediately added to a family. A new per-

son of the same gender as the family member should

be created and added to the person register. The

person’s name should be appropriately composed

from the family member’s name and surname. The

birthday of the person should have a default value

(arbitrarily fixed by the benchmark).

Deletion: A family member can be deleted. The cor-

responding person in the person register should be

deleted.

Update: A family member can be renamed. The cor-

responding person should be renamed accordingly.

Move: If a member is moved (defined as the combined

deletion and creation of the link connecting the fam-

ily member to a family), different cases have to be

distinguished. If the gender of the family member is

retained, the corresponding person object should be

preserved; otherwise, the person should be deleted,

and a new person with a different gender is created

whose attributes are copied from the old person.

A move within a family does not affect the corre-

sponding person’s name; a move to another family

results in a potential update of the person’s name.

Backward synchronization: In the backward direction,

a person may be mapped either to a parent or a child,
and persons may be grouped into families in different

ways. As argued earlier, non-determinism should be re-

solved as far as possible. This may be achieved in dif-

ferent ways. A default transformation would fix specific

mapping options (e.g., all persons may be mapped to

children and grouped into the same family if their fam-

ily names agree).

To provide for more flexibility, we decided to require

a configurable backward synchronization, to be con-

trolled by an update policy6 that must set two Boolean

parameters: (i) preferParentToChild controls whether a

person is to be mapped to a parent or a child (if both op-

tions are possible), and (ii) preferExistingToNewFamily

determines whether a person is to be mapped to a

family member added to an existing family, or added

to a newly created family containing only this single

family member (again if both options are possible). If

both parameters are set to true, the second parameter

6In practice this could either represent runtime user in-
teraction or compile-time design preferences.



8 Anthony Anjorin et al.

should take precedence: If the only existing family with

a matching family name has no unoccupied parent role,

the member is inserted into the family as a child (thus

respecting (ii) and ignoring (i)).

It should be noted that the update policy does not

resolve non-determinism completely. For example, let

us assume that persons should be added to existing

families as children. If we insert another person with

family name Smith into the persons model depicted in

Fig. 3, a corresponding member may be inserted either

into family f1 or into f2.

Furthermore, the update behavior may depend on

the order of change operations. For example, if persons

should be added to existing families as parents, and two

male persons with family name Miller are added to the

persons model, the first person will be added as a father

and the second person as a son.

Let us now consider change operations on persons:

Creation: New persons can be created and must be

added to the person register. A new family member

with correct gender and name should be created in

a suitable family in the family register. The update

policy is consulted if it is possible to add the new

family member to an existing family, and if the fam-

ily member can be added as a parent or a child.

Deletion: Persons can be deleted. The corresponding

family member should be deleted.

Update: Changes of birthdays do not affect the fami-

lies model. The first name of a person can be changed;

the name of the corresponding family member should

be updated accordingly. The family name of a per-

son can be changed; this change should not affect

the current family and its members. The family pre-

serves its name even if it does not contain any other

members. The corresponding family member should

instead be moved to another family, which may have

to be created as required; the precise update behav-

ior, if there are multiple possibilities, depends on the

specified update policy for the particular test case.

Move: Persons cannot be moved because the persons

model consists of a single, flat, unordered collection.

The update policy constitutes an example of appli-

cation-specific requirements, as discussed at the end of

Sect. 3.2.2. The rules for handling changes to family

names are application-specific, as well. They are based

on the underlying assumption that the person intends

to leave their family (e.g., because of marriage). This

kind of synchronization behavior may (arguably) be

considered reasonable; we simply take it for granted,

being required by an (imaginative) customer. However,

in certain circumstances it may (arguably) violate prin-

ciples such as least change (e.g., if the person was the

single member of a family); we use these principles only

as general guidelines, not as strict laws.

3.3 Challenges

The Families-to-Persons case includes a number of di-

verse challenges summarized in the following:

Heterogeneous metamodels: Solutions must estab-

lish a mapping between heterogeneous metamodels,

where the same information is represented in differ-

ent ways (concerning, e.g., names and genders).

Loss of information: The scenario is symmetric as

the family structure is only present in the source,

and birthdays are only present in the target.

No keys: There are no uniquely identifying (combina-

tions of) properties for family members or persons,

which makes synchronization difficult.

Non-determinism: The consistency relation is not de-

terministic: For a given families model, there can be

multiple correct persons models (birthdays may be

arbitrarily selected). Likewise, for a given persons

model there can be multiple correct families models

(due to different groupings into families and differ-

ent roles in these families). Synchronization has to

deal with this non-determinism (and resolve it as far

as possible).

Configurability: The behavior of backward synchro-

nization is controlled by an update policy determin-

ing roles of members and groupings of members into

families. The update policy may be changed at run-

time and should take effect only for future updates

(there is to be no global reshuffling of the families

model after the update policy has been changed).

Renaming and movement: Changes to be synchro-

nized include not only creations and deletions, but

also renamings and moves, which must not be re-

duced to deletions and creations so that changes can

be synchronized in a minimally invasive way.

Order-dependent synchronization: Backward syn-

chronization depends on the order in which change

operations on the persons model are processed. For

example, if two persons of the same gender are to

be inserted into the same family as parents, only the

first person can be inserted as a parent; the second

person must be added as a child.

Specific least surprise requirements: The bench-

mark requires adherence to an application-specific

definition of what “least surprise” is to mean. For

example, if the family name of a person is changed,

the corresponding family member should be moved

to another family (rather than having the family

name updated, with possible side effects on other



Benchmarking Bidirectional Transformations 9

members). This definition of which change is “bet-

ter” or “smaller” than another is arguably arbitrary

and must be treated as an additional requirement.

4 Foundations: Bx tool architectures

In this section, we introduce the most important terms

and notation required in the rest of the paper to de-

scribe and discuss the different bx approaches and so-

lutions to our benchmark.

We first of all define the input and output data for

bx tools in Sect. 4.1. Based on this, we identify basic

operations applied by bx tools to maintain consistency

in Sect. 4.2, and discuss how different combinations of

expected input and produced output lead to a number

of different bx application scenarios (Sect. 4.3). This

finally allows us to describe and discuss a series of pos-

sible bx tool architectures in Sect. 4.4.

This overview of the complete range of possible ar-

chitectures is used in Sect. 6 to assign the best fitting

architecture to each solution and bx tool used to solve

our benchmark. This helps to abstract from technical

details and focus on the conceptual core strategy real-

ized by each tool.

4.1 Input and output data

We refer to the input and output data expected and

produced by a bx tool as models and deltas, represent-

ing the data to be kept consistent, and changes applied

to models, respectively.

Definition 1 (Model)

A model, denoted by capital (primed) letters A, A′, B,

B′, is a generic term used to refer to the data to be kept

consistent by a bx tool.

We view the concrete representation of a model, e.g., a

graph, a tree, a set, as being internal to a bx tool and

thus not of primary relevance (for the goals and scope

of this paper). Note that unprimed and primed letters

such as A, A′ indicate that these models are related in

some way (e.g., are versions of the same original model

derived by applying a sequence of changes).

Example 1 (Models)

An example of two models from the Families-to-Persons

case is depicted in Fig. 3. These models are represented

using typed, attributed graphs.

Definition 2 (Delta)

A delta, denoted by an arrow δ : A → A′ going from

a “before” to an “after” model, is a generic term used

to refer to the relation between two models, where these

models are to be interpreted as being two versions (be-

fore and after) of the same model.

Again the concrete representation of a delta, e.g., a

span of mappings or a change log, is internal to a bx

tool and not of primary relevance. In order to precisely

classify our tests in the benchmark, however, we dis-

tinguish between delta representations that record the

order in which changes were made, and delta represen-

tations that only provide a structural mapping between

two versions of a model:

Definition 3 (Operational delta, o-delta)

An operational delta, denoted by (δ) : A
@→ A′, is a

delta that represents the changes made to a model as

an ordered sequence of applied change operations.

While the exact set of available change operations may

vary depending on the chosen technological space, we

assume the following set of change operations, which is

typical in an MDE (graph-based) setting: (i) addition

of elements (objects and links in a model), (ii) deletion

of elements, (iii) attribute changes, and (iv) movement

of objects. Note that our interpretation of “movement”

corresponds to a change of the container relation (as

defined by Ecore) of an object.

Definition 4 (Structural delta, s-delta)

A structural delta, denoted by 〈δ〉 : A ⇒ A′, is a delta

that represents the changes made to a model as a purely

structural mapping between the model and the version

of the model after applying the changes.

As it is impossible to discern from an s-delta 〈δ〉 the

exact order in which change operations were applied, it

can be represented as various, in this sense equivalent

o-deltas (δ), (δ′), ....

Finally, test cases in the benchmark are implemented

as a series of model edits, representing changes to be ap-

plied. It is helpful for conceptual clarity to differentiate

edits from deltas. Edits can produce deltas when ap-

plied to models, but can also fail:

Definition 5 (Edit)

An edit, denoted by @ : M → ∆ is a partial function @

from a set of models M to a set of deltas ∆. If an edit

is applicable to a model A, it can be applied to yield a

delta δ, i.e., @ : A 7−→ δ : A→ A′.

Example 2 (Deltas and edits)

Given the persons model to the right of Fig. 3, an s-

delta would be:

Added two female persons (Miller, Anne) and

(Miller, Sandra) to the persons register.



10 Anthony Anjorin et al.

Representing the same change as an o-delta requires fix-

ing the order in which these female persons were added

to the person register, for instance:

Added two female persons to the register in the

order [(Miller, Anne), (Miller, Sandra)].

As explained in Sect. 3, this distinction is required to

pass some of the tests in the benchmark. In contrast,

an edit would be, for example:

Attempt to delete the female person (Miller,

Anne) from the register.

This edit is not applicable to the register depicted to the

right of Fig. 3, but would be applicable to the resulting

register referenced by the deltas above.

Models and deltas are typically grouped into do-

mains or kinds. We use the term model space to refer

to this grouping:

Definition 6 (Model space)

A model space, denoted by M = (∆,M), consists of a

set of deltas ∆ between models taken from a set of mod-

els M . In the binary case, we denote one of the model

spaces as the source model space:MS = (∆S ,MS), and

the other as the target model space: MT = (∆T ,MT ).

While deltas represent relations between models in

the same model space, correspondences represent rela-

tions between models in different model spaces:

Definition 7 (Correspondence, corr)

A correspondence (or just corr), denoted by a bidirec-

tional arrow σ : A ↔ B, refers to a relation between

two models typically in different model spaces.

In order to support an intuitive understanding of

the diagrams used to discuss the tool architectures in

Sect. 4.2, deltas are often depicted visually as vertical

single-headed arrows, while corrs are depicted visually

as horizontal double-headed arrows. The models con-

nected by a corr are typically interpreted as being in

the same version, with respect to the relevant deltas

being discussed. In many cases, it is conceptually help-

ful to regard some correspondences as being diagonal in

the sense that they represent correspondences between

models (in different model spaces) that are in differ-

ent versions with respect to the relevant deltas being

discussed:

Definition 8 (Diagonal, diag)

A diagonal (or just diag), denoted by σ : A′ ↔ B, is a

corr that is “diagonal” in the sense that it connects two

models in different versions (A′ is in an updated, new

version, while B is in an old version) with respect to a

set of deltas being discussed.

While arbitrary pairs of models can be connected

in some way or another with a corr (or diag), not all

corrs make sense for a given consistency management

scenario. This is expressed by assuming an underlying

consistency relation that can be used to classify corrs

as being either consistent or not. This is summarized

together with all previous definitions in the following:

Definition 9 (Triple space)

A triple space, denoted by the triple (MS ,MT , C ⊆ R),

consists of a source model space MS, a target model

space MT , a set of corrs R connecting models in the

source and target model spaces, and a consistent subset

of corrs C ⊆ R. A corr c ∈ R is said to be consistent if

and only if c ∈ C.

Model spaces can be formalized as categories with

models as objects and deltas as arrows. If deltas are

formalized as spans of structure-preserving mappings,

then delta composition can be formalized as a pullback

of spans. Similarly to deltas, corrs and diags can also be

formalized as spans of structure-preserving mappings.

The reader interested in a more rigorous handling of

these terms is referred to e.g., Diskin et al. [16] and

Anjorin [1] for further details.

Example 3 (Model spaces, corrs, and triple space)

The source (target) model space for the Families-to-

Persons case consists of all models that are valid in-

stances of the families (persons) metamodel depicted to

the left (right) of Fig. 2, and all deltas between the mod-

els in each model space representing all possible com-

binations of the basic change operations (add/delete

elements, attribute changes, object movements).

For the Families-to-Persons case, corrs can be repre-

sented by mappings between family members and per-

sons. Consistent corrs are bijections that additionally

satisfy the two constraints given in Sect. 3.1. For the

pair of models depicted in Fig. 3, for example, a consis-

tent corr would consist of mappings fm〈n〉 ↔ p〈n〉 for

n ∈ {1, ..., 6}. The resulting triple space for the bench-

mark consists of these two model spaces, the set R of all

possible corrs (mappings between family members and

persons), and the consistent subset C ∈ R of bijections

that satisfy the two additional constraints.

We use triple spaces to abstract from exactly how

the underlying consistency relation is specified or checked

by concrete bx tools. To achieve a high-level but still

useful abstraction for consistency management strate-

gies, we now discuss a few basic consistency manage-

ment operations in the following.



Benchmarking Bidirectional Transformations 11

A B

hAln

vAln

A

A′�

A B

A′�

*

Fig. 4 Overview of auxiliary operations

4.2 Basic operations

While we do not aim to describe and discuss in detail

exactly how bx tools internally manage consistency, we

claim that there is actually only a small set of basic

operations, which are applied and combined in differ-

ent ways to realize different bx tool architectures. These

architectures can be used to classify bx tools and char-

acterize fundamental differences and similarities.

Figure 4 provides an overview of three auxiliary op-

erations showing their arity and indicating input and

output parameters. Using the same notation as Def. 1,

2, and 7, models are depicted as (primed) capital let-

ters, deltas as vertical single-headed arrows, and corrs

(diags) as horizontal (diagonal) double-headed arrows.

The three auxiliary operations are depicted as rectan-

gles, connected to their input via incoming, and to their

output via outgoing dotted single-headed arrows. These

operations are now explained in the following by pro-

viding concrete examples taken from our Families-to-

Persons benchmark:

Horizontal Alignment (hAln) takes two models A and

B in different model spaces and determines a corr

A ↔ B between them. It is in general impossible

to recover unique corrs and hAln is often heuristic-

based. For the Families-to-Persons case, a simple

strategy would be to pair female(male) persons and

family members with the right gender and same

family name and first name according to conven-

tion. The pair of models depicted in Fig. 3, how-

ever, shows that this is not sufficient to obtain the

unique correspondence when there are multiple per-

sons with the same name in the person register.

Vertical Alignment (vAln) takes two models A and A′

in the same model space and determines a delta

A → A′. This is also non-deterministic in general

as there can be multiple deltas going from A to A′.

Consider, for example, renaming a person Smith,

Mary to Smith, Anne, as opposed to deleting Smith,

B

A′� B′�
fCR

A′� B′�

fUP

A B

Fig. 5 Overview of basic operations

Mary and adding a new person Smith, Anne with

the same birthday. It is impossible to decide what

the delta is in this case, and vAln must apply suit-

able heuristics to make a choice.

Re-Alignment (∗) takes a coinciding corr and delta and

produces a diag by combining them. The idea is

that two models A and B were previously aligned

via A↔ B. Then A was changed to A′ yielding the

delta A→ A′. The task of ∗ is now to “re-align” the

new A′ with B. Re-alignment is often a straight-

forward task of updating the corr, removing obso-

lete (invalid) mappings due to deleted (changed) el-

ements in A, as well as adding any new mappings

from added (changed) elements in A to existing ele-

ments in B. Although we introduce ∗ as depicted in

Fig. 4, we shall also use variants of ∗ with different

input/output roles for the parameters, e.g., taking

the diag as input and producing corr and delta as

output. For simplicity, we shall also refer to these

operations as re-alignment, indicating clearly in the

diagrams which parameters are taken as input and

which are produced as output.

Figure 5 depicts two basic operations that can be

used to maintain consistency: either by restoring con-

sistency by suitably manipulating the dependent model

(left), or by propagating deltas from the master to the

dependent model (right). Appropriately combined with

the auxiliary operations discussed previously, a wide

range of different application scenarios can be addressed

by these two basic operations that are discussed in the

following:

Forward Consistency Restoration (fCR) takes as input

a diag A′ ↔ B and determines a delta B → B′ and

a consistent corr A′ ↔ B′; backward consistency

restoration (bCR) is defined analogously. This op-

eration obviously requires some knowledge of the

underlying consistency relation. The input diag is

typically not yet consistent and some strategy of

how to restore consistency by changing B in some

appropriate manner must be implemented. For ex-

ample, if an unmapped family member in A′ and

an unmapped person in B are found, a strategy to

restore consistency would be to rename the person



12 Anthony Anjorin et al.

in B′ so that a consistent corr can be reestablished.

Consistency restoration is often non-deterministic,

hence the need for laws to characterize “desirable”

behavior.

Forward Update Propagation (fUP) differs from fCR:

Instead of restoring consistency to an already incon-

sistent diag, fUP takes as input a (typically consis-

tent) corr A ↔ B and a delta A → A′. To decide

how to maintain consistency, fUP inspects the in-

put delta A → A′ and propagates the delta to B,

yielding an output delta B → B′ as well as a con-

sistent corr A′ ↔ B′. For example, adding a new

family member to A to yield A′ can be propagated

to adding a suitably named new person to B to yield

B′, and adding a mapping between the new family

member and person in A′ ↔ B′. Backward update

propagation (bUP) is defined analogously. Similar to

consistency restoration, update propagation is also

often non-deterministic.

4.3 Input-based application scenarios

In this section, we now discuss 11 different applica-

tion scenarios according to the provided input data in

each case. If certain input data, e.g., the input delta, is

available or not is often an intrinsic part of an appli-

cation scenario. Consider, for example, an application

scenario in which models are manipulated without any

means of tracking exactly which changes were made. If

this is part of the requirements (perhaps due to an ex-

isting process workflow at a company) and cannot be

influenced, then input deltas will not be available for

consistency management. To classify all possible appli-

cation scenarios, Table 1 depicts a grid distinguishing

horizontal and vertical input data to yield 11 possible

combinations.

The possibilities for vertical input data range from

just the changed source model A′ (initial-), to the old

and changed source models A, A′ (state-), to the input

delta A→ A′ (delta-). While the terms state and delta

should be natural, initial deserves some explanation. If

a bx tool is supplied the changed model A′ as vertical

input, it can only reasonably assume that the implied

input delta is ∅ → A′, i.e., the model A′ has been cre-

ated from scratch (even if this is not the case). The

empty model ∅ is often referred to as the initial object

and the unique existence of ∅ → A′ is required.

The possibilities for horizontal input data range from

nothing (batch-), to just the previous target model B

(state-), to the corr between previous source and tar-

get models A ↔ B, to the diag between the changed

source model and previous target model A′ ↔ B. All

Table 1 Overview of bx application scenarios

Nothing

initial-batch-
based

initial-state-
based

initial-diag-
based

state-batch-
based

state-state-
based

state-corr-
based

state-diag-
based

delta-batch-
based

delta-state-
based

delta-corr-
based

delta-diag-
based

B A B
A′�
A

A′�
A

A′�

batch- state- corr-

initial-

state-

delta-

A′� B
diag-

combinations of vertical and horizontal input are the-

oretically possible, apart from initial-corr-based, which

would be contradictory (the corr requires the presence

of A, which is not available). Compared to the com-

monly used but imprecise terms state-based or delta-

based, our classification schema allows for a fine-granular

distinction between, e.g., state-state-based, delta-state-

based, and state-corr-based.

From an inspection of all bx tools we are aware of, it

is our observation that tool architectures tend to be ei-

ther restoration-based (i.e., using basic operations fCR,

bCR) or propagation-based (i.e., using basic operations

fUP and bUP), but not both. A plausible explanation

is that implementing both fCR and fUP would be re-

dundant as both serve the same purpose of consistency

maintenance. All other basic operations are auxiliary in

nature and help compensate a mismatch between ap-

plication scenario and tool architecture.

Such a mismatch stems from the fact that bx tool

developers choose a certain bx tool architecture corre-

sponding to one of the 11 application scenarios, i.e., to

their expectations concerning what input data is avail-

able and what not. If a bx tool expects more input data

than is available, it can only be used in combination

with external alignment operations, which are required

to recover the missing data. This situation can be prob-

lematic as alignment can be imprecise, inefficient, and

difficult to implement. Faced with this overfitting mis-

match, users of such a bx tool tend to view the tool as

being heavy-weight, having unrealistic (utopic) expec-

tations, and thus not being worth the effort if one has to

implement all required additional auxiliary alignment

operations.

If a bx tool requires less input data than is avail-

able, the additional input data is simply ignored. While

the required alignment is either completely internalized,

e.g., via the use of in-built heuristics and optimization,

or is well-supported with an appropriate language or

API, our benchmark shows that this situation is still

undesirable as it leads to unexpected results in general.

Faced with this underfitting mismatch, users of such a



Benchmarking Bidirectional Transformations 13

∅

A′� B′�
fCR

∅ ∅

A′� B′�
fUP

initial-batch-based

Fig. 6 Initial-batch-based architectures

bx tool tend to view the tool as being a lightweight, but

often unpredictable, unconfigurable black-box.

Identifying the underlying architecture of a bx tool

helps to understand its limitations and compare it to

other bx tools. To support this architectural classifi-

cation, we now discuss possible restoration-based and

propagation-based tool architectures for each of our 11

application scenarios.

4.4 Bx tool architectures

Figure 6 depicts bx tool architectures for the simplest

application scenario, namely initial-batch-based. As this

application scenario can actually be handled with a

standard unidirectional model transformation, the ar-

chitectures are not necessarily practical, but show how

a bx tool can handle simple cases as degenerate ver-

sions of the more general case of consistency mainte-

nance. First some words on the notation used in all

architecture diagrams: the same notation for models,

deltas, corrs, diags, and basic operations is used as in

Fig. 4 and 5. In addition, all objects that are inter-

nally computed by the bx tool and typically not pre-

sented to the user are grayed out. Finally, output data

is distinguished from input data via a dotted border. To

improve readability, the restoration-based architectures

for every application scenario are depicted to the left of

the figures, while the propagation-based architectures

are depicted to the right.

To apply fCR in an initial-batch-based application

scenario, the empty diag is assumed and provided as

additional input to produce ∅ → B′ and A′ ↔ B′. In

this scenario, only B′ is typically required as output,

although a bx tool would (internally) compute a corr

as well. Similarly, fUP can be applied by assuming and

providing the empty corr ∅ ↔ ∅ and ∅ → A′. Note

that both architectures do not require any auxiliary

operations as the implied empty diag, corr, and delta

are typically trivial to compute. In practice, however,

(mis)using a bx tool for this simple application scenario

can be much more inefficient than a standard transfor-

mation, and we are thus not aware of any dedicated bx

tool that addresses solely this application scenario.

Figure 7 depicts three architectures addressing the

more common bx application scenario initial-state-based.

In this scenario, the previous output model B is addi-

tionally provided as input, so that the bx tool has the

chance of preserving as much information as possible

in B while maintaining consistency. The conceptually

simplest architecture makes use of fCR by computing

a diag between A′ and B using hAln. If both bCR and

fCR are available, vAln can be used in place of hAln,

by first determining A ↔ B, then A → A′ via vAln,

and then the required diag A′ ↔ B with ∗. While this

might sound more complex, it can make sense if all

necessary operations are available, while hAln is not.

A propagation-based architecture for this scenario (de-

picted to the right of Fig. 7) can use bUP to determine

A ↔ B and vAln to establish the required input delta

A → A′ for fUP. If bUP or vAln is unavailable, an

alternative propagation-based architecture (not shown

explicitly as a diagram) can use hAln to compute the

diag A′ ↔ B, then the inverse of ∗ to determine the

corr A↔ B and delta A→ A′ for fUP.

Figure 8 depicts architectures addressing the initial-

diag-based application scenario. This represents a per-

fect fit for a restoration-based architecture, as fCR can

be directly applied without requiring any auxiliary op-

erations. It is also of practical relevance, as A is often

destructively changed to A′ in many application sce-

narios, leaving A′ ↔ B naturally as the left-over corr.

Note that the typical output for this scenario is the

updated, consistent corr A′ ↔ B′. While it is theo-

retically possible to address initial-diag-based scenarios

with a propagation-based architecture, Fig. 8 indicates

why this is awkward in comparison: to apply fUP , one

would have to determine A ↔ B and A → A′ from

B

A′� B′�

h Aln

fCR

vAln

A B

A′�

*

fCR

∅

bCR

B′�

vAln

A B

A′�
fUP

∅ ∅
bUP

B′�

initial-state-basedFig. 7 Initial-state-based architectures



14 Anthony Anjorin et al.
initial-diag-based

B

A′� B′�
fCR

A B

A′�

*

B′�
fUP

Fig. 8 Initial-diag-based architectures

the diag A′ ↔ B, a task in itself already comparable in

complexity to fCR/bCR.

Figure 9 depicts architectures addressing the state-

batch-based application scenario. In all cases, A has to

be extended to A ↔ B. fCR can then be used either

by combining vAln and ∗, or by using hAln to directly

determine A′ ↔ B. The propagation-based architec-

ture uses vAln to determine the missing input delta

for fUP . The complexity of all three architectures indi-

cates that a state-batch-based application scenario can

be considered relatively unfavorable compared to the

initial-state-based case.

Figure 10 depicts architectures addressing the state-

state-based application scenario. In both cases, hAln

and vAln are required to recover the corr A ↔ B and

input delta A→ A′. While this already constitutes the

input for fUP, the restoration-based architecture addi-

tionally requires ∗ to determine the diag for fCR.

The architectures depicted in Fig. 11 for the state-

corr-based application scenario are fairly analogous to

the state-state-based case. The only difference and sim-

state-batch-based

A B

A′�
fUP

B′�

∅
fUP

∅
∅

fCR

vAln

A B

A′�

*

fCR

B′�

∅

fCR

A B

A′�
fCR

B′�

h Aln
vAln

Fig. 9 State-batch-based architectures

state-state-based

vAln

A B

A′�
fUP

B′�

h Aln

vAln

A B

A′�

*

fCR

B′�

h Aln

Fig. 10 State-state-based architectures

plification is that the required corr is supplied as input

and hAln is therefore not needed.

Figure 12 depicts architectures for state-diag-based

and for delta-diag-based application scenarios. As the

required input diag for fCR is directly supplied, provid-

ing extra input does not seem reasonable and we thus do

not suggest any restoration-based architectures. Even

the propagation-based architectures appear awkward:

To make use of all provided input in the state-diag-

based case, either the delta A→ A′ must be determined

with vAln (depicted to the left of Fig. 12), or the corr

A ↔ B with hAln (not depicted in the figure). Taking

this delta (or corr) and the supplied diag as input, ∗ can

then be used to compute the required corr (or delta),

so that fUP can be used. The propagation-based archi-

tecture for the delta-diag-based case is analogous, only

simplified as the input delta is supplied and does not

need to be computed with vAln.

Figure 13 depicts the architectures for the delta-

batch-based application scenario. These are simplified

versions of architectures for the state-batch-based case,

as the required input delta is now provided and does

not need to be computed via vAln. Note that both

state-corr-based

vAln

A B

A′�
fUP

B′�

vAln

A B

A′�

*

fCR

B′�
Fig. 11 State-corr-based architectures

state-diag-based

A B

A′�

*

B′�
fUP

vAln

delta-diag-based

B′�

A B

A′�

*

fUP

Fig. 12 State- and delta-diag-based architecturesdelta-batch-based

A B

A′�
fUP

B′�

∅
fUP

∅

A B

A′�

*

fCR

B′�

∅

fCR

Fig. 13 Delta-batch-based architectures



Benchmarking Bidirectional Transformations 15

delta-state-based

A B

A′�

*

fCR

B′�

h Aln

A B

A′�
fUP

B′�

h Aln

Fig. 14 Delta-state-based architectures

delta-corr-based

A B

A′�
fUP

B′�

A B

A′�

*

fCR

B′�
Fig. 15 Delta-corr-based architectures

architectures neither require auxiliary alignment, nor

bCR (bUP) for consistency restoration (update propa-

gation).

The architectures depicted in Fig. 14 are for the

delta-state-based application scenario. As the previous

target model B is provided in this scenario, the archi-

tectures can use hAln to determine the corr A ↔ B

and can make do without a second application of fCR

(fUP) as in the delta-batch-based case.

Finally, Fig. 15 depicts the architectures for the

delta-corr-based application scenario. The diagrams in-

dicate that this is the ideal case for applying fUP as

exactly what is required is available as input. While

the restoration-based architecture requires realignment

via ∗, this is usually a simple operation in this case.

4.5 Classifying bx tools

Reflecting the 11 application scenarios and possible bx

tool architectures discussed in detail in previous para-

graphs, the variability of bx tool architectures is repre-

sented as a feature model in Fig. 16, extended to cover

some additional features of bx tools. Our goal in this pa-

per is not to suggest a further exhaustive feature model

for bx approaches such as Hidaka et al. [26], but more

to make intensive use of a minimal set of core features

to classify the different bx tools used to solve our bx

benchmark.

Using standard feature model notation, features are

denoted as rectangles; a gray fill denotes abstract fea-

tures that are only used to group other features. Cir-

cles with a black fill indicate mandatory children, cir-

cles without a fill optional children. Children connected

with an angle without a fill are exclusively ored, while

children connected with an angle with a black fill are

ored. Features that exclude each other are connected

with a dashed, double-headed (red) arrow; A dashed,

single-headed (green) arrow from a feature f to another

feature g denotes that f requires (implies) g.

A bx tool must have a bx tool architecture, devel-

oped in a specific style (either restoration-based using

fCR/bCR or propagation-based using fUP/bUP), and

addressing a specific application scenario according to

expected input and provided output. Concerning hori-

zontal input, a scenario can exclusively require no input

at all, the previous output model (state-based), a diag

(diag-based), or a corr (corr-based) as input. In con-

trast, vertical input is a mandatory feature, forcing an

exclusive choice between requiring just the input model

(initial-based), the previous and changed input models

(state-based), and an input delta (delta-based). In prac-

tice, it is also informative to know if a bx tool expects

an s-delta or o-delta. Finally, as explained previously,

requiring a corr and only the input model (initial) is

contradictory, hence the exclusion between these two

features.

A major goal of bx languages and tools is often to

provide some added value compared to implementing

synchronization using standard unidirectional transfor-

mation languages. While this goal can be realized as an

attempt to increase productivity, it is often also realized

as an attempt to increase the quality of implemented

synchronization solutions. In Fig. 16, therefore, we in-

clude an optional feature well-behavedness guarantees,

which can include a combination of correctness, hippo-

craticness, round-trip laws, termination, and complete-

ness (totality) guarantees.

An important, hence mandatory feature of a bx tool

is its underlying consistency relation. This has to be

specified in some manner, either implicitly, e.g., by pro-

viding implementations of fCR/bCR (fUP/bUP) com-

bined with round-trip laws, or explicitly, by specifying

a set of constraints, providing a grammar (language

membership as consistency check), implementing a con-

sistency checker in some suitable (programming) lan-

guage, or via a combination of these (partial) specifi-

cations, e.g., grammar-based for structural parts of the

model and constraint-based for attribute values. Cor-

rectness can only be guaranteed with respect to the un-

derlying consistency relation, so this only makes sense

as a feature if the relation is explicitly provided to the

tool, hence the requirement between these features.

A final, core feature of a bx tool is synchroniza-

tion and we have observed that this can be either con-

trolled implicitly, e.g., based on the underlying consis-

tency relation and some governing laws the bx tool au-

tomatically derives fCR/bCR or fUP/bUP as required,



16 Anthony Anjorin et al.

initial-based

state-based

application scenario

horizontal 
input

vertical 
input

state-based
corr-based delta-based

s-delta-based o-delta-based

bx tool

synchronizationwell-behavedness 
guarantees

consistency 
relation

implicit
(derived)

explicit
(programmed)

implicit explicit
(programmed)

constraint
-based other

grammar-
based

other

correctness

hippocraticness

round-trip laws

termination

diag-based

bx tool architecture

style

propagation-
based

restoration-
based

completeness / totality

control

direction
directed

time

concurrent

automation

live

on-demand

automatic

interactive

Fig. 16 Bx tool variability as a feature model

or explicitly, e.g., the bx tool requires implementations

of fCR/bCR or fUP/bUP, and perhaps performs some

checking for compatibility of these implementations.

Some bx tools allow a mixture of implicit and explicit,

e.g., requiring an implementation of fCR (fUP) and au-

tomatically deriving a compatible bCR (bUP), or vice-

versa. Although most bx tools are currently limited to

directed synchronization, a few tools already attempt

to address the more general task of concurrent synchro-

nization. A bx tool can be designed for on-demand syn-

chronization, allowing a user (or arbitrary component)

to decide exactly when to synchronize, or for live syn-

chronization deciding itself when “atomic” deltas must

be propagated. Synchronization with a bx tool is inter-

active (automatic) if the tool is (not) specially designed

to incorporate user interaction at runtime.

5 The Benchmarx framework

The Benchmarx framework is a component-based frame-

work that enables a comparison of bx tools. A major

challenge addressed by the framework is that different

bx tools may require different input data. The solution

adopted by the Benchmarx framework is to provide a

unifying design space, in which different bx tool archi-

tectures can be placed, classified, and evaluated.

While the general conceptual design of the Bench-

marx framework can be transferred to any technologi-

cal space, we provide a reference implementation based

on Eclipse, the Eclipse Modeling Framework (EMF),

JUnit as a unit testing framework, and Java. To en-

sure that non-EMF and even non-JVM-based bx tools

can be integrated with no restrictions on the input

data of the tools, we use a string representation of pro-

duced and expected models established by convention

for each benchmark example. The current solutions to

the Families-to-Persons case show that it is indeed pos-

sible to integrate diverse bx tools with reasonable effort.

5.1 Design of a Benchmarx test suite

Figure 17 depicts a feature model for Benchmarx test

cases. Every Benchmarx test case must state the rele-

vant application scenario (cf. Fig. 16), its direction to

be (exclusively) fwd (forward), bwd (backward) or a

mix of both, i.e., a round trip, if the test case requires

runtime configuration or not, and the combination of

different change types applied in the test. The set of

possible change types can be extended in the future to

accommodate more expressive frameworks.

Benchmarx is designed as a generic framework for

benchmarking bx tools; we thus strive to minimize re-

quirements regarding the typically tool-specific repre-

sentation of deltas and corrs. Instead of establishing

some standard data structure for deltas and corrs, test

cases are designed as synchronization dialogs. A syn-

chronization dialog always starts from the same agreed

benchmarx
test case

application scenario direction

fwd round tripbwd
del attribute

change type

add

runtime 
configuration

Fig. 17 Variability of Benchmarx test cases



Benchmarking Bidirectional Transformations 17

 /** Test for changing a person's full name (where another person with
 *  the same name exists).
 *  Expected: first name of the corresponding member and their family
 *  name must be changed. As no fitting family exists, a new family must be
 *  created and the member moved to this new family (as the father of this family).
 *  Features: bwd, attribute, corr-based, structural, runtime */
@Test
public void testFullNameChangeOfNonUniquePerson() {

        tool.initiateSynchronisationDialogue();

        util.configure().makeDecision(Decisions.PREFER_CREATING_PARENT_TO_CHILD, true)
                        .makeDecision(Decisions.PREFER_EXISTING_FAMILY_TO_NEW, true);
        tool.performAndPropagateTargetEdit(helperPerson::createSimpsonsWithTwoBarts);
        ...
        util.assertPrecondition("Pre_MemberNameChangeOther", "Pre_PersonNameChangeOther");

        //----------------
        util.configure().makeDecision(Decisions.PREFER_CREATING_PARENT_TO_CHILD, true);
        tool.performAndPropagateTargetEdit(helperPerson::fullNameChangeOfOtherBart);
        //----------------

        util.assertPostcondition("MemberFullNameChangeOther","PersonFullNameChangeOther");
}

1

3

5

6

4

2

Documentation:
  What is being tested? 
  Expected behaviour?

Classification:
  List of features of the test case

TEST CASE NAME/ID:

Initiate Synchronisation 
Dialogue

Synchronisation Dialogue 
to Establish Precondition

Assert Precondition

Synchronisation Dialogue 
to Establish Postcondition

Assert Postcondition

Runtime Configuration

Update Propagation

1

3

5

6

4

2

Fig. 18 A Benchmarx test case as a synchronization dialog

upon initial consistent state, and then applies a se-

quence of edits to the source and target models. Only

the resulting models are directly asserted by compar-

ing them with expected versions. In this manner, each

bx tool is free to maintain arbitrary internal state, e.g.,

recording deltas during edit application, or maintaining

corrs in whatever format is required.

A Benchmarx test case is depicted schematically to

the left of Fig. 18, with a concrete test case for our

example depicted to the right of Fig. 18, following the

proposed schema using JavaDoc, Java, and JUnit as

implementation technologies. Each test case contains a

documentation (cf. Label 1 in Fig. 18) stating (i) what

is being tested, (ii) the expected behavior, and (iii) a

list of the concrete features of the test case taken from

Fig. 17 to clarify at a glance if a given bx tool can be ex-

pected to pass the test or not, i.e., if the relevant appli-

cation scenario for the test case matches the addressed

application scenario of the (implemented solution with

the) bx tool.

The test case itself starts by initializing the sup-

plied bx tool (Label 2); the agreed upon starting state

is hereby established (e.g., for the Families-to-Persons

benchmark this comprises a single empty family regis-

ter and a corresponding single empty person register),

and all necessary internal (auxiliary) tool-specific data

structures can be created at this point.

The subsequent part of a test case (Label 3) consists

of a series of propagation steps, used to establish the

precondition of the test. Although this creates a depen-

dency on other tests (asserting exactly this precondi-

tion), it allows us to abstract from any tool-specific corr

representation, as every bx tool can build up whatever

internal state it requires along with the precondition.

In this manner, the input corr is “passed” implicitly

to the bx tool via a series of preparatory propagation

steps. Each propagation step is specified in the test case

as a source or target edit (realized as a Java lambda ex-

pression), which is passed to the bx tool and is to be

performed on the source or target model. In this man-

ner, the bx tool can record7 whatever it wants when

applying the edit to produce, e.g., a tool-specific repre-

sentation of an o-delta or s-delta.

The precondition is finally asserted (Label 4), rep-

resenting a well-defined starting point for the test. If

the test requires a runtime update policy (cf. Sect. 1),

this is configured (Label 5) just before propagating the

relevant input edit. A sequence of such (optional) con-

figuration and edit propagation steps form the primary

synchronization dialog used to establish the postcondi-

tion (Label 5). The final part of a test case (Label 6) is

an assertion of the postcondition, checking if the final

source and target models are as expected.

In the concrete test case depicted to the right of

Fig. 18, a number of persons are created in the per-

son register and then propagated backward to establish

a consistent family register that is asserted as a pre-

condition. As part of the actual test, a person named

Simpson, Bart is now renamed in the person register;

this change is propagated backward with a runtime

update policy set to prefer creating parents (if pos-

sible) to creating children. Note that in this partic-

ular test, two persons with the name Bart Simpson

are created as part of the precondition (indicated by

the target edit createSimpsonsWithTwoBarts). As a con-

sequence, this test can only be reliably passed if corrs

7EMF supports this via a notification framework.



18 Anthony Anjorin et al.

Initiate Synchronisation Dialogue

perform edit on the family model and propagate changes

perform edit on the person model 

perform edit on the family model 

set configurator with parameters

compare actual models with expected ones

compare actual models with expected ones

save current states of source and target models

the name of the BXTool

perform edit on the person model and propagate changes

Fig. 19 The BXTool interface

are exploited as explicit input (indicated by the feature

corr-based in the classification of the test).

The current test suite provided for the Families-to-

Persons case consists of such test cases as in Fig. 18

separated into two broad categories: (1) batch test cases

providing only the input model and no horizontal in-

put (initial-batch-based), and (2) alignment-based test

cases providing an input delta and input corr (delta-

corr-based). More tests covering the other bx appli-

cation scenarios identified in Table 1 can be added in

the future. Each category comprises test cases for each

transformation direction.8

While the batch test cases are basic tests used to

check if a given source model is transformed into a new

target model correctly, different input source deltas are

handled by the alignment-based tests. In particular, re-

naming, deleting, and moving persons and family mem-

bers are currently addressed in these test cases. To keep

the number of test cases manageable, only the batch

category contains separate test cases for each combi-

nation of configuration parameters. In the alignment-

based category, the parameters (preferences represented

by the update policy) are changed dynamically during

test case execution.

5.2 Implementing a benchmark with a bx tool

In order to use a specific bx tool with the Benchmarx

framework, a single interface BXTool, depicted in Fig. 19,

8Recall from Sect. 1 that the forward direction is from
the families model to the persons model, while backward is
from the persons model to the families model.

needs to be implemented. For EMF-based tools, we pro-

vide an abstract class BXToolForEMF that contains imple-

mentations for both assert methods and can be sub-

classed to simplify the integration in the benchmark.

The method initiateSynchronisationDialogue is in-

voked before each test case run and is used to estab-

lish the agreed upon common starting state for a given

benchmark. For the Families-to-Persons case, this con-

sists of a single empty family register and its corre-

sponding single and empty person register, plus all in-

ternal, tool-specific internal data structures.

The two methods performAndPropagateSourceEdit and

performAndPropagateTargetEdit are called from the test

cases when corresponding edits should be performed

and propagated on the corresponding models. In con-

trast, the methods performIdleSourceEdit and perform-

IdleTargetEdit are used to modify source and target

models, respectively, without propagating the change.

These methods should be used whenever a change in the

respective models does not affect the opposite model,

e.g., when the birthday date of a person is changed, or

the role of a family member in its containing family.

Multiple benchmarks including Families-to-Persons,

together with solutions using numerous bx tools are

maintained in the Benchmarx GitHub repository9 to-

gether with documentation on how to add solutions to

existing benchmarks as well as add entirely new bench-

marks to the collection.

9https://github.com/eMoflon/benchmarx

https://github.com/eMoflon/benchmarx


Benchmarking Bidirectional Transformations 19

Table 2 Summary of classification of all tools and solutions

BiGUL BXtend eMoflon EVL+Strace JTL NMF SDMLib

Style
(tool)

restoration-
based

restoration-
based

propagation-
based

restoration-
based

restoration-
based

propagation-
based

restoration-
based

Scenario
(solution)

initial-state-
based

(with hAln)

initial-
diag-based

s-delta-corr-
based

initial-diag-
based

initial-diag-
based

o-delta-
corr-based

initial-
diag-based

Guarantees
(tool)

round-trip
laws

none
correctness,

completeness
none

correctness,
hippocratic-

ness

correctness,
hippocratic-

ness
none

Consistency
(tool)

implicit implicit
explicit

(grammar-
based)

explicit
(constraint-

based)

explicit
(constraint-

based)

explicit
(constraint-

based)
implicit

Control
(tool)

explicit and
implicit

explicit implicit explicit implicit
explicit and

implicit
explicit

Direction
(tool)

directed directed directed concurrent directed directed directed

Time
(solution)

on-demand on-demand on-demand on-demand on-demand live on-demand

Automation
(solution)

automatic automatic automatic interactive interactive automatic automatic

6 Description of benchmark solutions

This section presents solutions to the Families-to-Per-

sons benchmark submitted to the Transformation Tool

Contest 2017 [2]. The solutions have been selected to

cover a wide spectrum of bx approaches, implemented

in different tools and languages. Some of them (BiGUL,

BXtend, and eMoflon) were provided as reference so-

lutions to the TTC 2017 participants. The solutions

in EVL+Strace, NMF Synchronizations, and SDMLib

were submitted to TTC 2017 and were published in

the TTC proceedings [28,47,56]. The JTL solution was

prepared after the TTC.

A summary of a classification of these seven solu-

tions based on our feature model is provided in Table 2.

In the following subsections, one for each tool/solution

in alphabetical order, we shall refer to this table and

explain each tool’s classification in detail.

6.1 BiGUL

BiGUL [35], short for the Bidirectional Generic Update

Language, is the current result of a long line of research

on bidirectional programming [22] predominantly per-

formed by the programming language community. Bidi-

rectional programming languages typically share two

main ideas in common: (i) the task of programming a

bx can be reduced by automatically deriving one direc-

tion of synchronization from the other direction that is

explicitly programmed, and (ii) well-behavedness prop-

erties are guaranteed by providing a small set of well-

behaved primitive functions, and combinators to al-

low bx programmers to compose complex, well-behaved

bidirectional programs from these primitives.

Most bidirectional programming languages address

asymmetric consistency relations, where one of the mod-

els (the view) is fully determined by the other model

(the source). Instead of forward and backward synchro-

nization, the terms put (the source is dependent, view

is master) and get (the view is dependent, source is

master) are used instead. In this asymmetric setting,

get simplifies to a function that takes a source and pro-

duces a view, i.e., the old view is not necessary.

As a bidirectional programming language, BiGUL is

unique in the sense that it provides a programming lan-

guage (primitives and combinators) for programming

put instead of get. Such a putback-based bidirectional

programming language has the advantage that get can

be fully derived from put (the inverse is not true in gen-

eral), for the price that put is often more complex (and

thus requires more effort to program) than get.

6.1.1 Classification

A summary of the features of BiGUL according to our

common feature model for bx tools is provided in the

first column of Table 2. These features will now be dis-

cussed in detail in the following.

BiGUL’s architecture clearly follows a restoration-

based style, i.e., the bx programmer has the job of pro-

gramming put as fCR and thinks in terms of how to

restore the consistency of both models by comparing

them and making suitable changes to the dependent

model. The exact delta between the previous and cur-

rent master model is thus not of primary interest.



20 Anthony Anjorin et al.

The main application scenario addressed by BiGUL

is initial-state-based. Referring to Fig. 7, the exact tool

architecture of BiGUL is the top-left restoration-based

combination of fCR and hAln. Specific to BiGUL, put

programs tend to be a recursive, flexible mix of inter-

twined “bits and pieces” of fCR and hAln, rather than

clearly separated functions as Fig. 7 appears to suggest.

A further point is that BiGUL is flexible enough to be

used for other application scenarios, e.g., by encoding

corrs, diags, and deltas as part of the models passed

to the tool. When programming hAln, for example, one

could then access this extra information and also up-

date it if necessary. While this is indeed possible, it

is also clear that the language was specifically designed

for initial-state-based scenarios, which is how it was also

applied to solve the benchmark.

BiGUL is formally founded and was originally devel-

oped in the dependently typed programming language

Agda [42] so as to formally verify its well-behavedness

guarantees; for practical usage a Haskell port of BiGUL

is provided.10 BiGUL guarantees basic round-trip laws

for the programmed put and automatically derived get

functions. These laws (putget and getput) are closely

related to correctness and hippocraticness; we refer to

Ko et al. for further details [35].

The underlying consistency relation is never speci-

fied explicitly when working with BiGUL. It is implicitly

implied by the provided put program together with the

guaranteed round-trip laws, which fix the correspond-

ing derived get program.

BiGUL represents an interesting mix of explicit and

implicit control over consistency restoration: put is ex-

plicitly programmed, while get is automatically derived,
i.e., implicitly programmed. Well-behavedness guaran-

tees that the derived get, if it exists, is unique for the

provided put.

Finally, BiGUL currently only supports directed syn-

chronization, performed on-demand by executing put

or get as required. While support for (user) interaction

can be implemented as required, there is no direct sup-

port for this; BiGUL is designed more for automatic

consistency maintenance.

6.1.2 Benchmark solution with BiGUL

In this section we provide a top-down, high-level, and

intentionally incomplete description of the solution to

the Families-to-Persons benchmark with BiGUL. Our

aim is not to explain all details, but rather to impart an

intuition for the basic structure of the solution. We refer

10http://hackage.haskell.org/package/BiGUL

PersonRegisterFamilyRegister

MediumR
putSyncR

<latexit sha1_base64="TbkMwmo/ie3tM2hElgCLeCPTfO4=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047I+agtpKJPppB06mQkzN0IJ/Qw3LhRx69e482+ctllo64GBwzn3MvecKBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej66nffmLacCUfcJyyMCEDyWNOCVopSDPs5fdjSe8mvWrNq3szuMvEL0gNCjR71a9uX9EsYRKpIMYEvpdimBONnAo2qXQzw1JCR2TAAkslSZgJ89nJE/fEKn03Vto+ie5M/b2Rk8SYcRLZyYTg0Cx6U/E/L8gwvgxzLm0yJun8ozgTLip3mt/tc80oirElhGpub3XpkGhC0bZUsSX4i5GXyeNZ3ffq/u15rXFV1FGGIziGU/DhAhpwA01oAQUFz/AKbw46L8678zEfLTnFziH8gfP5A7qMkYc=</latexit><latexit sha1_base64="TbkMwmo/ie3tM2hElgCLeCPTfO4=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047I+agtpKJPppB06mQkzN0IJ/Qw3LhRx69e482+ctllo64GBwzn3MvecKBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej66nffmLacCUfcJyyMCEDyWNOCVopSDPs5fdjSe8mvWrNq3szuMvEL0gNCjR71a9uX9EsYRKpIMYEvpdimBONnAo2qXQzw1JCR2TAAkslSZgJ89nJE/fEKn03Vto+ie5M/b2Rk8SYcRLZyYTg0Cx6U/E/L8gwvgxzLm0yJun8ozgTLip3mt/tc80oirElhGpub3XpkGhC0bZUsSX4i5GXyeNZ3ffq/u15rXFV1FGGIziGU/DhAhpwA01oAQUFz/AKbw46L8678zEfLTnFziH8gfP5A7qMkYc=</latexit><latexit sha1_base64="TbkMwmo/ie3tM2hElgCLeCPTfO4=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047I+agtpKJPppB06mQkzN0IJ/Qw3LhRx69e482+ctllo64GBwzn3MvecKBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej66nffmLacCUfcJyyMCEDyWNOCVopSDPs5fdjSe8mvWrNq3szuMvEL0gNCjR71a9uX9EsYRKpIMYEvpdimBONnAo2qXQzw1JCR2TAAkslSZgJ89nJE/fEKn03Vto+ie5M/b2Rk8SYcRLZyYTg0Cx6U/E/L8gwvgxzLm0yJun8ozgTLip3mt/tc80oirElhGpub3XpkGhC0bZUsSX4i5GXyeNZ3ffq/u15rXFV1FGGIziGU/DhAhpwA01oAQUFz/AKbw46L8678zEfLTnFziH8gfP5A7qMkYc=</latexit><latexit sha1_base64="TbkMwmo/ie3tM2hElgCLeCPTfO4=">AAAB8nicbVDLSsNAFL2pr1pfVZdugkVwVRIRdFl047I+agtpKJPppB06mQkzN0IJ/Qw3LhRx69e482+ctllo64GBwzn3MvecKBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmKWtRJZTuRMQwwSVrIUfBOqlmJIkEa0ej66nffmLacCUfcJyyMCEDyWNOCVopSDPs5fdjSe8mvWrNq3szuMvEL0gNCjR71a9uX9EsYRKpIMYEvpdimBONnAo2qXQzw1JCR2TAAkslSZgJ89nJE/fEKn03Vto+ie5M/b2Rk8SYcRLZyYTg0Cx6U/E/L8gwvgxzLm0yJun8ozgTLip3mt/tc80oirElhGpub3XpkGhC0bZUsSX4i5GXyeNZ3ffq/u15rXFV1FGGIziGU/DhAhpwA01oAQUFz/AKbw46L8678zEfLTnFziH8gfP5A7qMkYc=</latexit>

getSyncR
<latexit sha1_base64="VJ7sE4wg8yuzRPqrF0yN6YAdg6I=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWP9qC2koWy2k3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmGbSYEkp3ImpAcAkt5Cigk2qgSSSgHY2up377CbThSj7gOIUwoQPJY84oWikYAPby+7Fkd5NetebVvRncZeIXpEYKNHvVr25fsSwBiUxQYwLfSzHMqUbOBEwq3cxAStmIDiCwVNIETJjPTp64J1bpu7HStiS6M/X3RE4TY8ZJZDsTikOz6E3F/7wgw/gyzLlMMwTJ5oviTLio3On/bp9rYCjGllCmub3VZUOqKUObUsWG4C++vEwez+q+V/dvz2uNqyKOMjkix+SU+OSCNMgNaZIWYUSRZ/JK3hx0Xpx352PeWnKKmUPyB87nD5O+kW4=</latexit><latexit sha1_base64="VJ7sE4wg8yuzRPqrF0yN6YAdg6I=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWP9qC2koWy2k3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmGbSYEkp3ImpAcAkt5Cigk2qgSSSgHY2up377CbThSj7gOIUwoQPJY84oWikYAPby+7Fkd5NetebVvRncZeIXpEYKNHvVr25fsSwBiUxQYwLfSzHMqUbOBEwq3cxAStmIDiCwVNIETJjPTp64J1bpu7HStiS6M/X3RE4TY8ZJZDsTikOz6E3F/7wgw/gyzLlMMwTJ5oviTLio3On/bp9rYCjGllCmub3VZUOqKUObUsWG4C++vEwez+q+V/dvz2uNqyKOMjkix+SU+OSCNMgNaZIWYUSRZ/JK3hx0Xpx352PeWnKKmUPyB87nD5O+kW4=</latexit><latexit sha1_base64="VJ7sE4wg8yuzRPqrF0yN6YAdg6I=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWP9qC2koWy2k3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmGbSYEkp3ImpAcAkt5Cigk2qgSSSgHY2up377CbThSj7gOIUwoQPJY84oWikYAPby+7Fkd5NetebVvRncZeIXpEYKNHvVr25fsSwBiUxQYwLfSzHMqUbOBEwq3cxAStmIDiCwVNIETJjPTp64J1bpu7HStiS6M/X3RE4TY8ZJZDsTikOz6E3F/7wgw/gyzLlMMwTJ5oviTLio3On/bp9rYCjGllCmub3VZUOqKUObUsWG4C++vEwez+q+V/dvz2uNqyKOMjkix+SU+OSCNMgNaZIWYUSRZ/JK3hx0Xpx352PeWnKKmUPyB87nD5O+kW4=</latexit><latexit sha1_base64="VJ7sE4wg8yuzRPqrF0yN6YAdg6I=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxWP9qC2koWy2k3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8KBXcoOd9O6WV1bX1jfJmZWt7Z3evun/waFSmGbSYEkp3ImpAcAkt5Cigk2qgSSSgHY2up377CbThSj7gOIUwoQPJY84oWikYAPby+7Fkd5NetebVvRncZeIXpEYKNHvVr25fsSwBiUxQYwLfSzHMqUbOBEwq3cxAStmIDiCwVNIETJjPTp64J1bpu7HStiS6M/X3RE4TY8ZJZDsTikOz6E3F/7wgw/gyzLlMMwTJ5oviTLio3On/bp9rYCjGllCmub3VZUOqKUObUsWG4C++vEwez+q+V/dvz2uNqyKOMjkix+SU+OSCNMgNaZIWYUSRZ/JK3hx0Xpx352PeWnKKmUPyB87nD5O+kW4=</latexit>

getSyncL
<latexit sha1_base64="3uIvdf9SKGofYEbsEKwkIjFt+Kw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxYOHitYW0lA220m7dLMbdidCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXpQKbtDzvp3Syura+kZ5s7K1vbO7V90/eDQq0wxaTAmlOxE1ILiEFnIU0Ek10CQS0I5G11O//QTacCUfcJxCmNCB5DFnFK0UDAB7+f1YsttJr1rz6t4M7jLxC1IjBZq96le3r1iWgEQmqDGB76UY5lQjZwImlW5mIKVsRAcQWCppAibMZydP3BOr9N1YaVsS3Zn6eyKniTHjJLKdCcWhWfSm4n9ekGF8GeZcphmCZPNFcSZcVO70f7fPNTAUY0so09ze6rIh1ZShTaliQ/AXX14mj2d136v7d+e1xlURR5kckWNySnxyQRrkhjRJizCiyDN5JW8OOi/Ou/Mxby05xcwh+QPn8weKoJFo</latexit><latexit sha1_base64="3uIvdf9SKGofYEbsEKwkIjFt+Kw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxYOHitYW0lA220m7dLMbdidCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXpQKbtDzvp3Syura+kZ5s7K1vbO7V90/eDQq0wxaTAmlOxE1ILiEFnIU0Ek10CQS0I5G11O//QTacCUfcJxCmNCB5DFnFK0UDAB7+f1YsttJr1rz6t4M7jLxC1IjBZq96le3r1iWgEQmqDGB76UY5lQjZwImlW5mIKVsRAcQWCppAibMZydP3BOr9N1YaVsS3Zn6eyKniTHjJLKdCcWhWfSm4n9ekGF8GeZcphmCZPNFcSZcVO70f7fPNTAUY0so09ze6rIh1ZShTaliQ/AXX14mj2d136v7d+e1xlURR5kckWNySnxyQRrkhjRJizCiyDN5JW8OOi/Ou/Mxby05xcwh+QPn8weKoJFo</latexit><latexit sha1_base64="3uIvdf9SKGofYEbsEKwkIjFt+Kw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxYOHitYW0lA220m7dLMbdidCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXpQKbtDzvp3Syura+kZ5s7K1vbO7V90/eDQq0wxaTAmlOxE1ILiEFnIU0Ek10CQS0I5G11O//QTacCUfcJxCmNCB5DFnFK0UDAB7+f1YsttJr1rz6t4M7jLxC1IjBZq96le3r1iWgEQmqDGB76UY5lQjZwImlW5mIKVsRAcQWCppAibMZydP3BOr9N1YaVsS3Zn6eyKniTHjJLKdCcWhWfSm4n9ekGF8GeZcphmCZPNFcSZcVO70f7fPNTAUY0so09ze6rIh1ZShTaliQ/AXX14mj2d136v7d+e1xlURR5kckWNySnxyQRrkhjRJizCiyDN5JW8OOi/Ou/Mxby05xcwh+QPn8weKoJFo</latexit><latexit sha1_base64="3uIvdf9SKGofYEbsEKwkIjFt+Kw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69BIvgqSQi6LHoxYOHitYW0lA220m7dLMbdidCCf0ZXjwo4tVf481/47bNQVsfDDzem2FmXpQKbtDzvp3Syura+kZ5s7K1vbO7V90/eDQq0wxaTAmlOxE1ILiEFnIU0Ek10CQS0I5G11O//QTacCUfcJxCmNCB5DFnFK0UDAB7+f1YsttJr1rz6t4M7jLxC1IjBZq96le3r1iWgEQmqDGB76UY5lQjZwImlW5mIKVsRAcQWCppAibMZydP3BOr9N1YaVsS3Zn6eyKniTHjJLKdCcWhWfSm4n9ekGF8GeZcphmCZPNFcSZcVO70f7fPNTAUY0so09ze6rIh1ZShTaliQ/AXX14mj2d136v7d+e1xlURR5kckWNySnxyQRrkhjRJizCiyDN5JW8OOi/Ou/Mxby05xcwh+QPn8weKoJFo</latexit>

putSyncL
<latexit sha1_base64="dGJYejQFQsvwaT3DjaLloKMANBo=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0lE0GPRiwcPFa0tpKFstpt26WY37L4IJfRnePGgiFd/jTf/jds2B20dWBhm3mPfTJQKbtDzvp3Syura+kZ5s7K1vbO7V90/eDQq05S1qBJKdyJimOCStZCjYJ1UM5JEgrWj0fXUbz8xbbiSDzhOWZiQgeQxpwStFKQZ9vL7saS3k1615tW9Gdxl4hekBgWavepXt69oljCJVBBjAt9LMcyJRk4Fm1S6mWEpoSMyYIGlkiTMhPns5Il7YpW+Gyttn0R3pv7eyElizDiJ7GRCcGgWvan4nxdkGF+GOZc2GZN0/lGcCReVO83v9rlmFMXYEkI1t7e6dEg0oWhbqtgS/MXIy+TxrO57df/uvNa4KuoowxEcwyn4cAENuIEmtICCgmd4hTcHnRfn3fmYj5acYucQ/sD5/AGxbpGB</latexit><latexit sha1_base64="dGJYejQFQsvwaT3DjaLloKMANBo=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0lE0GPRiwcPFa0tpKFstpt26WY37L4IJfRnePGgiFd/jTf/jds2B20dWBhm3mPfTJQKbtDzvp3Syura+kZ5s7K1vbO7V90/eDQq05S1qBJKdyJimOCStZCjYJ1UM5JEgrWj0fXUbz8xbbiSDzhOWZiQgeQxpwStFKQZ9vL7saS3k1615tW9Gdxl4hekBgWavepXt69oljCJVBBjAt9LMcyJRk4Fm1S6mWEpoSMyYIGlkiTMhPns5Il7YpW+Gyttn0R3pv7eyElizDiJ7GRCcGgWvan4nxdkGF+GOZc2GZN0/lGcCReVO83v9rlmFMXYEkI1t7e6dEg0oWhbqtgS/MXIy+TxrO57df/uvNa4KuoowxEcwyn4cAENuIEmtICCgmd4hTcHnRfn3fmYj5acYucQ/sD5/AGxbpGB</latexit><latexit sha1_base64="dGJYejQFQsvwaT3DjaLloKMANBo=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0lE0GPRiwcPFa0tpKFstpt26WY37L4IJfRnePGgiFd/jTf/jds2B20dWBhm3mPfTJQKbtDzvp3Syura+kZ5s7K1vbO7V90/eDQq05S1qBJKdyJimOCStZCjYJ1UM5JEgrWj0fXUbz8xbbiSDzhOWZiQgeQxpwStFKQZ9vL7saS3k1615tW9Gdxl4hekBgWavepXt69oljCJVBBjAt9LMcyJRk4Fm1S6mWEpoSMyYIGlkiTMhPns5Il7YpW+Gyttn0R3pv7eyElizDiJ7GRCcGgWvan4nxdkGF+GOZc2GZN0/lGcCReVO83v9rlmFMXYEkI1t7e6dEg0oWhbqtgS/MXIy+TxrO57df/uvNa4KuoowxEcwyn4cAENuIEmtICCgmd4hTcHnRfn3fmYj5acYucQ/sD5/AGxbpGB</latexit><latexit sha1_base64="dGJYejQFQsvwaT3DjaLloKMANBo=">AAAB8nicbVBNS8NAFHypX7V+VT16CRbBU0lE0GPRiwcPFa0tpKFstpt26WY37L4IJfRnePGgiFd/jTf/jds2B20dWBhm3mPfTJQKbtDzvp3Syura+kZ5s7K1vbO7V90/eDQq05S1qBJKdyJimOCStZCjYJ1UM5JEgrWj0fXUbz8xbbiSDzhOWZiQgeQxpwStFKQZ9vL7saS3k1615tW9Gdxl4hekBgWavepXt69oljCJVBBjAt9LMcyJRk4Fm1S6mWEpoSMyYIGlkiTMhPns5Il7YpW+Gyttn0R3pv7eyElizDiJ7GRCcGgWvan4nxdkGF+GOZc2GZN0/lGcCReVO83v9rlmFMXYEkI1t7e6dEg0oWhbqtgS/MXIy+TxrO57df/uvNa4KuoowxEcwyn4cAENuIEmtICCgmd4hTcHnRfn3fmYj5acYucQ/sD5/AGxbpGB</latexit>

fwd = getSyncL; putSyncR
<latexit sha1_base64="VzuI+bo07ebV2I6CxqBtbR8GG6s=">AAACCHicbVDNS8MwHE3n15xfVY8eDA7B02hFUBBh6MWDh/mxD9hKSdN0C0vTkqRKKT168V/x4kERr/4J3vxvzLYedPNB4OW934/kPS9mVCrL+jZKc/MLi0vl5crK6tr6hrm51ZJRIjBp4ohFouMhSRjlpKmoYqQTC4JCj5G2N7wY+e17IiSN+J1KY+KEqM9pQDFSWnLN3eDBh2ewT5Sb3aYcX+XwFMZJcbvJXbNq1awx4CyxC1IFBRqu+dXzI5yEhCvMkJRd24qVkyGhKGYkr/QSSWKEh6hPuppyFBLpZOMgOdzXig+DSOjDFRyrvzcyFEqZhp6eDJEayGlvJP7ndRMVnDgZ5ToZ4XjyUJAwqCI4agX6VBCsWKoJwoLqv0I8QAJhpbur6BLs6cizpHVYs62afX1UrZ8XdZTBDtgDB8AGx6AOLkEDNAEGj+AZvII348l4Md6Nj8loySh2tsEfGJ8/1qWZOQ==</latexit><latexit sha1_base64="VzuI+bo07ebV2I6CxqBtbR8GG6s=">AAACCHicbVDNS8MwHE3n15xfVY8eDA7B02hFUBBh6MWDh/mxD9hKSdN0C0vTkqRKKT168V/x4kERr/4J3vxvzLYedPNB4OW934/kPS9mVCrL+jZKc/MLi0vl5crK6tr6hrm51ZJRIjBp4ohFouMhSRjlpKmoYqQTC4JCj5G2N7wY+e17IiSN+J1KY+KEqM9pQDFSWnLN3eDBh2ewT5Sb3aYcX+XwFMZJcbvJXbNq1awx4CyxC1IFBRqu+dXzI5yEhCvMkJRd24qVkyGhKGYkr/QSSWKEh6hPuppyFBLpZOMgOdzXig+DSOjDFRyrvzcyFEqZhp6eDJEayGlvJP7ndRMVnDgZ5ToZ4XjyUJAwqCI4agX6VBCsWKoJwoLqv0I8QAJhpbur6BLs6cizpHVYs62afX1UrZ8XdZTBDtgDB8AGx6AOLkEDNAEGj+AZvII348l4Md6Nj8loySh2tsEfGJ8/1qWZOQ==</latexit><latexit sha1_base64="VzuI+bo07ebV2I6CxqBtbR8GG6s=">AAACCHicbVDNS8MwHE3n15xfVY8eDA7B02hFUBBh6MWDh/mxD9hKSdN0C0vTkqRKKT168V/x4kERr/4J3vxvzLYedPNB4OW934/kPS9mVCrL+jZKc/MLi0vl5crK6tr6hrm51ZJRIjBp4ohFouMhSRjlpKmoYqQTC4JCj5G2N7wY+e17IiSN+J1KY+KEqM9pQDFSWnLN3eDBh2ewT5Sb3aYcX+XwFMZJcbvJXbNq1awx4CyxC1IFBRqu+dXzI5yEhCvMkJRd24qVkyGhKGYkr/QSSWKEh6hPuppyFBLpZOMgOdzXig+DSOjDFRyrvzcyFEqZhp6eDJEayGlvJP7ndRMVnDgZ5ToZ4XjyUJAwqCI4agX6VBCsWKoJwoLqv0I8QAJhpbur6BLs6cizpHVYs62afX1UrZ8XdZTBDtgDB8AGx6AOLkEDNAEGj+AZvII348l4Md6Nj8loySh2tsEfGJ8/1qWZOQ==</latexit><latexit sha1_base64="VzuI+bo07ebV2I6CxqBtbR8GG6s=">AAACCHicbVDNS8MwHE3n15xfVY8eDA7B02hFUBBh6MWDh/mxD9hKSdN0C0vTkqRKKT168V/x4kERr/4J3vxvzLYedPNB4OW934/kPS9mVCrL+jZKc/MLi0vl5crK6tr6hrm51ZJRIjBp4ohFouMhSRjlpKmoYqQTC4JCj5G2N7wY+e17IiSN+J1KY+KEqM9pQDFSWnLN3eDBh2ewT5Sb3aYcX+XwFMZJcbvJXbNq1awx4CyxC1IFBRqu+dXzI5yEhCvMkJRd24qVkyGhKGYkr/QSSWKEh6hPuppyFBLpZOMgOdzXig+DSOjDFRyrvzcyFEqZhp6eDJEayGlvJP7ndRMVnDgZ5ToZ4XjyUJAwqCI4agX6VBCsWKoJwoLqv0I8QAJhpbur6BLs6cizpHVYs62afX1UrZ8XdZTBDtgDB8AGx6AOLkEDNAEGj+AZvII348l4Md6Nj8loySh2tsEfGJ8/1qWZOQ==</latexit>

bwd = getSyncR; putSyncL
<latexit sha1_base64="fNPpZlaHRw3FV9waTcu4Zx37Q5Q=">AAACCHicbVDNS8MwHE3n15xfVY8eDA7B02hFUBBh6MWDh/mxD9hKSdN0C0vTkqRKKT168V/x4kERr/4J3vxvzLYedPNB4OW934/kPS9mVCrL+jZKc/MLi0vl5crK6tr6hrm51ZJRIjBp4ohFouMhSRjlpKmoYqQTC4JCj5G2N7wY+e17IiSN+J1KY+KEqM9pQDFSWnLNXe/Bh2ewT5Sb3aYc3+TwFMZJcbvKXbNq1awx4CyxC1IFBRqu+dXzI5yEhCvMkJRd24qVkyGhKGYkr/QSSWKEh6hPuppyFBLpZOMgOdzXig+DSOjDFRyrvzcyFEqZhp6eDJEayGlvJP7ndRMVnDgZ5ToZ4XjyUJAwqCI4agX6VBCsWKoJwoLqv0I8QAJhpbur6BLs6cizpHVYs62afX1UrZ8XdZTBDtgDB8AGx6AOLkEDNAEGj+AZvII348l4Md6Nj8loySh2tsEfGJ8/0HGZNQ==</latexit><latexit sha1_base64="fNPpZlaHRw3FV9waTcu4Zx37Q5Q=">AAACCHicbVDNS8MwHE3n15xfVY8eDA7B02hFUBBh6MWDh/mxD9hKSdN0C0vTkqRKKT168V/x4kERr/4J3vxvzLYedPNB4OW934/kPS9mVCrL+jZKc/MLi0vl5crK6tr6hrm51ZJRIjBp4ohFouMhSRjlpKmoYqQTC4JCj5G2N7wY+e17IiSN+J1KY+KEqM9pQDFSWnLNXe/Bh2ewT5Sb3aYc3+TwFMZJcbvKXbNq1awx4CyxC1IFBRqu+dXzI5yEhCvMkJRd24qVkyGhKGYkr/QSSWKEh6hPuppyFBLpZOMgOdzXig+DSOjDFRyrvzcyFEqZhp6eDJEayGlvJP7ndRMVnDgZ5ToZ4XjyUJAwqCI4agX6VBCsWKoJwoLqv0I8QAJhpbur6BLs6cizpHVYs62afX1UrZ8XdZTBDtgDB8AGx6AOLkEDNAEGj+AZvII348l4Md6Nj8loySh2tsEfGJ8/0HGZNQ==</latexit><latexit sha1_base64="fNPpZlaHRw3FV9waTcu4Zx37Q5Q=">AAACCHicbVDNS8MwHE3n15xfVY8eDA7B02hFUBBh6MWDh/mxD9hKSdN0C0vTkqRKKT168V/x4kERr/4J3vxvzLYedPNB4OW934/kPS9mVCrL+jZKc/MLi0vl5crK6tr6hrm51ZJRIjBp4ohFouMhSRjlpKmoYqQTC4JCj5G2N7wY+e17IiSN+J1KY+KEqM9pQDFSWnLNXe/Bh2ewT5Sb3aYc3+TwFMZJcbvKXbNq1awx4CyxC1IFBRqu+dXzI5yEhCvMkJRd24qVkyGhKGYkr/QSSWKEh6hPuppyFBLpZOMgOdzXig+DSOjDFRyrvzcyFEqZhp6eDJEayGlvJP7ndRMVnDgZ5ToZ4XjyUJAwqCI4agX6VBCsWKoJwoLqv0I8QAJhpbur6BLs6cizpHVYs62afX1UrZ8XdZTBDtgDB8AGx6AOLkEDNAEGj+AZvII348l4Md6Nj8loySh2tsEfGJ8/0HGZNQ==</latexit><latexit sha1_base64="fNPpZlaHRw3FV9waTcu4Zx37Q5Q=">AAACCHicbVDNS8MwHE3n15xfVY8eDA7B02hFUBBh6MWDh/mxD9hKSdN0C0vTkqRKKT168V/x4kERr/4J3vxvzLYedPNB4OW934/kPS9mVCrL+jZKc/MLi0vl5crK6tr6hrm51ZJRIjBp4ohFouMhSRjlpKmoYqQTC4JCj5G2N7wY+e17IiSN+J1KY+KEqM9pQDFSWnLNXe/Bh2ewT5Sb3aYc3+TwFMZJcbvKXbNq1awx4CyxC1IFBRqu+dXzI5yEhCvMkJRd24qVkyGhKGYkr/QSSWKEh6hPuppyFBLpZOMgOdzXig+DSOjDFRyrvzcyFEqZhp6eDJEayGlvJP7ndRMVnDgZ5ToZ4XjyUJAwqCI4agX6VBCsWKoJwoLqv0I8QAJhpbur6BLs6cizpHVYs62afX1UrZ8XdZTBDtgDB8AGx6AOLkEDNAEGj+AZvII348l4Md6Nj8loySh2tsEfGJ8/0HGZNQ==</latexit>

Fig. 20 Handling a symmetric bx with BiGUL

the reader interested in further details to the BiGUL

solution available on GitHub.11

As BiGUL only directly supports asymmetric bx,

the first challenge when implementing the Families-to-

Persons benchmark is to decompose the symmetric bx

into two asymmetric bx. The decomposition applied in

the proposed BiGUL solution is depicted in Fig. 20.

Bold arrows represent functions to be programmed by

the bx developer, while dashed arrows represent auto-

matically derived functions. In this decomposition, an

additional data structure MediumR is introduced and can

be thought of intuitively as the intersection of both data

structures, i.e., it contains exactly the concepts that

are present in both the source and target model spaces

and that must be kept consistent. All the bx developer

now has to do is program how MediumR models can be

put into PersonRegister models via putSyncR, and into

FamilyRegister models via putSyncL. The required fwd

and bwd transformations can then be computed as de-

picted in Fig. 20 by composing programmed put and

derived get arrows as required.12

To provide a feeling for actual BiGUL code, List-

ing 1 depicts the BiGUL program for putSyncR. Recall

that the architecture for this solution is restoration-

based (with hAln) for an initial-state-based scenario.

So this code represents fCR and hAln (see Fig. 7).

As both models are essentially lists (of persons and

(name, gender) pairs), hAln can be implemented with

the auxiliary, higher-order function align (Line 4) that

takes a matching condition and uses it to lift a BiGUL

program on elements to lists. The strategy is to tra-

verse the list of view elements and to search for the

first source element that matches according to the con-

dition (here simply a comparison of name and gender

on Lines 7–8). If a match is found, then the first part of

the fCR code (Lines 10–25) is executed (it does nothing

as the elements are already consistent); if no match can

be found, then a new source element is created using

the second part of the fCR code (Lines 27–30). If un-

11http://bit.ly/bigul-f2p-benchmarx
12The actual solution is a bit more complex as SyncL is

further decomposed into two arrows.

http://hackage.haskell.org/package/BiGUL
http://bit.ly/bigul-f2p-benchmarx


Benchmarking Bidirectional Transformations 21

Listing 1 Structure of a BiGUL program

1 syncR :: BiGUL PersonRegister MediumR
2 syncR =
3 $(rearrS [| \( PersonRegister ps) -> ps |])$
4 align (const True)
5 (\p (name , gender) ->
6 splitFullName
7 (getFullName p) == name &&
8 isMale p == gender)
9 (Case [

10 $(normalSV
11 [p| Male _ _ |]
12 [p| _ |]
13 [p| Male _ _ |])
14 ==>$(update
15 [p| Male name _ |]
16 [p| (name , True) |]
17 [d| name = Skip splitFullName |]),
18 $(normalSV
19 [p| Female _ _ |]
20 [p| _ |]
21 [p| Female _ _ |])
22 ==>$(update
23 [p| Female name _ |]
24 [p| (name , False) |]
25 [d| name = Skip splitFullName |])
26 ])
27 (\(( familyName , firstName), gender) ->
28 (if gender then Male else Female)
29 (familyName ++ ", " ++ firstName)
30 defaultDate)
31 (const Nothing)

matched source elements remain after all view elements

have been matched, they are deleted by align.

Finally, although the code might appear cryptic with-

out looking up all details, the used BiGUL primitives

are highlighted as keywords in Listing 1. The point here

is that the entire program is actually a composition of

primitives, but is designed in a way that it appears to

be written in an imperative programming language [34].

6.2 BXtend

BXtend [6], an acronym for Bidirectional Xtend, is a

pragmatic approach to programming bx, developed to

address problems encountered in the practical applica-

tion of existing bx languages and tools [7].

BXtend provides an internal DSL based on Xtend,

a multi-paradigm language supporting object-oriented,

procedural and functional programming, as well as a

seamless integration with the Eclipse IDE and the main-

stream programming language Java.

To realize a bidirectional transformation, the trans-

formation developer defines a correspondence model, re-

sembling the correspondence graph of a triple graph

grammar [48]. In contrast to triple graph grammars,

however, transformation rules are defined in a procedu-

ral rather than declarative way and are attached to cor-

respondences. Both transformation directions are pro-

grammed separately; the transformation developer is

responsible for programming both directions in a mu-

tually consistent way. Altogether, BXtend provides a

light-weight framework in which developers can struc-

ture their bx solutions in a straightforward manner.

6.2.1 Classification

BXtend’s architectural style is restoration-based, ad-

dressing initial-diag-based application scenarios (see Ta-

ble 2). The restoration-based architecture for initial-

diag-based application scenarios is depicted to the left

of Fig. 8: the programmer takes a diag and has the task

of manipulating the dependent model until both mod-

els are consistent again. The corr between the models

should also be updated in the process and returned.

With BXtend, the program representing fCR/bCR

is decomposed into multiple “rules” consisting of restora-

tion logic separated into forward and backward direc-

tion. Each rule defines flexibly, e.g., based on a certain

type, if it is applicable and can be used to check and

fix a specific inconsistency or not. Similarly, each rule

checks first by exploiting the supplied diag if existing

structure in the dependent model can be reused, suit-

ably changed, or must be deleted and created as re-

quired. To perform fCR/bCR on the top-most level, an

orchestration component is implemented to decide the

order in which individual rules are applied and com-

bined to realize fCR/bCR. This global component can

also perform a final clean up if required. The delta im-

plicitly induced as output (see Fig. 8) is mixed in the

sense that each rule can freely perform deletion and

creation as required in no fixed order.

BXtend provides no formal guarantees: both syn-

chronization directions are implemented separately and

are free to contradict each other. This can be viewed

positively: the bx programmer is free to do whatever

is required to solve the current task. There is no ex-

plicitly specified notion of consistency, i.e., this is im-

plicitly given by the implemented pair of fCR/bCR.

The transformation developer has full explicit control

over consistency restoration, i.e., implements both fCR

and bCR explicitly in Xtend. BXtend is currently de-

signed to support directed synchronization, performed

on-demand, in an automatic manner.

6.2.2 Benchmark solution with BXtend

To provide an impression of the benchmark solution

with BXtend, Listing 2 depicts two classes: Family2-

PersonTransformation representing the orchestrating com-

ponent, and MotherDaughter2Female representing a BX-

tend rule. For the Families-to-Persons benchmark, the

same ordering of rules can be used in both directions



22 Anthony Anjorin et al.

Listing 2 Rule orchestration and a specific rule with BXtend

1 class Family2PersonTransformation {
2 ...
3 def private void addRules () {
4 ...
5 rules.add(new Register2Register(
6 sourceModel , targetModel ,
7 corrModel , decision ))
8 rules.add(new MotherDaughter2Female(
9 sourceModel , targetModel ,

10 corrModel , decision ))
11 rules.add(new FatherSon2Male(
12 sourceModel , targetModel ,
13 corrModel , decision ))
14 }
15 ...
16 }
17
18 class MotherDaughter2Female
19 extends FamilyMember2Person {
20 ...
21 override sourceToTarget(String s) {
22 sourceModel.allContents
23 .filter(typeof(Family ))
24 .forEach [ family |
25 val corr = family.eContainer
26 .getCorrModelElem
27 val females = ECollections.newBasicEList
28 females.addAll(family.daughters)
29 if (family.mother != null)
30 females.add(family.mother)
31 females.forEach [ member |
32 val corrFemale =
33 member.getOrCreateCorrModelElement(s)
34 val female = getOrCreatePersonElement(
35 family.name + ", " + member.name ,
36 corrFemale , ...)
37 (corr.personElement as PersonRegister)
38 .getPersons (). add(female)
39 ]
40 ]
41 }
42
43 override targetToSource(String s) {
44 targetModel.allContents
45 .filter(typeof(Female ))
46 .forEach [ p | ...]
47 }
48 }

(Lines 5–13). This order is specified in addRules(); three

rules are created and added following the composition

hierarchy of the metamodels (containers first). While

the bx developer is free to program arbitrarily complex

rule orchestration, current experience indicates that such

a fixed order along the composition hierarchy is suffi-

cient in most cases.

The specific rule MotherDaughter2Female checks for

and handles, as its name suggests, inconsistencies be-

tween mothers/daughters in the source model and fe-

males in the target model. The two methods in this class

sourceToTarget and targetToSource indicate that both

synchronization directions (fCR and bCR) are explic-

itly specified. The first step in sourceToTarget is to filter

for all families, and to accumulate all “female” family

members, i.e., a mother if present, and all daughters.

On Lines 32–33, the provided diag is accessed and used

to retrieve the person connected to each female fam-

ily member. With a helper method getOrCreatePerson-

Element, this person is either created if necessary, or

updated as required.

6.3 eMoflon

eMoflon [38] applies triple graph grammars in the tech-

nological space of EMF. Models are viewed as graphs,

where objects and links are represented by nodes and

edges, respectively. A correspondence graph connect-

ing the source and the target graph is maintained to

keep track of the relationships between source and tar-

get elements. Consistency is specified declaratively by

providing a triple graph grammar (TGG) [48]. A TGG

consists of a schema, which defines types of correspon-

dences to be maintained in the correspondence graph,

and a set of (triple) rules. Each rule describes a syn-

chronous extension of the whole triple graph. Rules are

monotonic, i.e., they add nodes and edges, but they do

not delete them. Together with a start graph (which is

assumed to be empty in eMoflon), triple rules consti-

tute a graph grammar which generates consistent triple

graphs, i.e., triples of mutually consistent source, cor-

respondence, and target graphs.

From synchronous triple rules, directed rules are au-

tomatically derived. A directed rule assumes that a lo-

cal extension has been performed on the master graph,

and propagates this extension to the correspondence

graph and the dependent graph. To perform a directed

synchronization, either forward or backward rules are

applied, depending on the requested transformation di-

rection. To restore consistency, all rule applications that

were invalidated by changes made to the master graph

(the graph that has been modified last) are revoked in a

first “rollback” phase. In a second “translation” phase,

directed rules are applied such that the resulting triple

graph is consistent according to the TGG, i.e., the triple

graph could also have been generated from the start

graph by applying synchronous TGG rules.

6.3.1 Classification

eMoflon operates in a propagation-based style: As input,

the tool thus expects old versions of the master, depen-

dent, and correspondence graphs, as well as a structural

delta between the old and the new versions of the mas-

ter graph. The tool architecture is thus classified as

s-delta-corr-based (see the right-hand side of Fig. 15).

eMoflon derives both fUP and bUP automatically from

the TGG, and uses these functions to propagate the

structural delta from the master to the correspondence

and dependent models. Each TGG rule can be viewed



Benchmarking Bidirectional Transformations 23

as a connected pair of a source and target edit, describ-

ing an infinite set of paired source and target deltas

produced by these edits. With this in mind, deriving

fUP from a TGG is fairly straightforward: every input

source delta is decomposed into a sequence of smaller

source deltas that can be induced by a corresponding

sequence of source edits from TGG rules. Once this se-

quence of required source edits has been computed, each

source edit is propagated to the target edit specified by

the corresponding TGG rule. The derived sequence of

target edits is applied to the target model to produce

a target delta as output of fUP (deriving bUP works

analogously).

eMoflon guarantees correctness: After a directed syn-

chronization, a triple graph is obtained that is guaran-

teed to be a member of the language generated by the

TGG. Under certain conditions that can be mapped

to required properties of the underlying TGG, eMoflon

also guarantees completeness: Every structural delta

that results in a master model for which a consistent

triple exists, can be successfully propagated to the cor-

respondence and dependent model. While such total-

ity guarantees are often ignored in formal frameworks,

practical instantiations of these frameworks tend to im-

plement partial consistency restoration. For instance,

although the put and get functions for BiGUL can fail

in general, this is not regarded as a violation of the

round-trip laws.

In eMoflon, the consistency relation is defined ex-

plicitly by a grammar that generates consistent triple

graphs. Synchronization is controlled implicitly, as di-

rected rules for consistency restoration are derived un-

der the hood. eMoflon currently supports only directed

synchronization. Finally, eMoflon is designed mainly for

on-demand and automatic synchronization.

6.3.2 Benchmark solution with eMoflon

The benchmark solution is composed of a graph schema

and a set of triple rules. The graph schema (not shown)

defines two types of correspondence nodes for relation-

ships between family and person registers, as well as be-

tween family members and persons, respectively. Each

correspondence node is linked to exactly one node in

the families graph and one node in the persons graph,

respectively. The rule set consists of one rule for creat-

ing and relating family and person registers, and a set

of rules for creating family members and persons. In

principle, eight rules could be specified independently

from each other for covering all cases with respect to

the roles of family members, and the creation of a new

or the reuse of an existing family. As this would re-

sult in highly redundant rules with many copies of rule

Listing 3 Mapping family members to persons

1 #abstract #rule FamilyMember2Person
2 #with FamiliesToPersons
3
4 #source {
5 families : FamilyRegister {
6 ++ -families ->f
7 }
8 ++ f : Family
9 ++ fm : FamilyMember

10 }
11
12 #target {
13 persons : PersonRegister {
14 ++ -persons ->p
15 }
16 ++ p : Person
17 }
18
19 #correspondence {
20 families2persons : FamiliesToPersonsCorr {
21 #src ->families
22 #trg ->persons
23 }
24 ++ member2Persons : FamilyMemberToPerson {
25 #src ->fm
26 #trg ->p
27 }
28 }
29
30 #attributeConditions {
31 concat(", ", f.name , fm.name , p.name)
32 }

elements, however, eMoflon supports rule inheritance

that can be used to factor out common rule elements

into abstract superrules.

Listing 3 depicts an abstract rule which serves as

root of the inheritance hierarchy. As TGGs are often

regarded as a predominantly visual language, eMoflon

also supports a read-only visualization for TGGs rules.

To simplify comparison to all other bx languages eval-
uated in this paper, however, a textual concrete syntax

is used here to represent and discuss TGG rules.

A rule which is designated as abstract is not ap-

plied as such, but (eventually) needs to be refined by

concrete rules. The with clause on Line 2 refers to the

underlying TGG schema. The triple rule is composed of

three parts, indicated by the keywords source, target,

and correspondence, respectively. The rule requires the

presence of a family register (Line 5), a person regis-

ter (Line 13), and a correspondence (Line 20) which

is linked to the family register in the source graph and

the person register in the target graph. Nodes and edges

to be created are decorated with a ++ qualifier. In the

source graph, a family is created along with an incom-

ing edge from the family register; in addition, a family

member is created. In the target graph, a person is cre-

ated and linked to the person register. The family mem-

ber and the person are connected by a correspondence

to be added to the correspondence graph (Line 24). Fi-

nally, the attribute condition (Line 31) specifies that



24 Anthony Anjorin et al.

the name of the person is composed from the family

name and the first name of the family member.

Listing 4 Mapping members in existing families to persons

1 #abstract #rule ExistingFamily2Person
2 #extends FamilyMember2Person
3 #with FamiliesToPersons
4
5 #source {
6 families : FamilyRegister {
7 -families ->f
8 }
9 f : Family

10 }

The abstract rule in Listing 3 creates a family to-

gether with a family member. This rule is refined by an-

other abstract rule which assumes that a suitable fam-

ily already exists (Listing 4). The subrule inherits all

elements from its superrule, but redefines the binding

state (removes the ++) of the family node (Line 9) and

its incoming edge (Line 7).

Listing 5 Mapping daughters to female persons

1 #rule DaughterToFemale
2 #extends FamilyMember2Person
3 #with FamiliesToPersons
4
5 #source {
6 ++ f : Family {
7 ++ -daughters ->fm
8 }
9 ++ fm : FamilyMember

10 }
11
12 #target {
13 ++ p : Female
14 }

Listing 5 shows one out of four concrete rules for

mapping family members in new families to persons.

The rule adds the edge between the family and the

member, which has been missing so far (Line 7), and

redefines the type of the person from Person to Female.

Listing 6 Mapping daughters in existing families to females

1 #rule DaughterOfExistingFamilyToFemale
2 #extends ExistingFamily2Person , DaughterToFemale
3 #with FamiliesToPersons

Listing 6 demonstrates the use of multiple inher-

itance: The rule for creating a daughter in an exist-

ing family as well as a female person is obtained by

extending both the abstract rule for mapping mem-

bers in existing families to persons (Listing 4), and

the concrete rule for mapping daughters in new fam-

ilies to females (Listing 5). Conflicts are resolved by

favoring “context over create”. This means that sub-

rules are allowed to extend the precondition of their

superrules but never reduce it. The family node f in

DaughterOfExistingFamilyToFemale thus obtains its bind-

ing state from the rule ExistingFamily2Person.

As presented so far, the backward transformation

would behave non-deterministically. To obtain a config-

urable backward transformation, controlled by configu-

ration parameters, the set of applicable alternatives for

a given match in the persons graph is constrained dy-

namically according to the current setting of configura-

tion parameters. For example, if children are preferred

in new families, mappings of a person to a parent as well

as to a child in an existing family are disabled. As the

TGG language does not offer any control structures, the

configurability of the backward transformation is real-

ized as an additional Java program that communicates

with the transformation engine via an API.

6.4 EVL+Strace

The bx tool EVL+Strace [46] is based on EMF as well

as the Epsilon framework [36], which provides tool sup-

port for a variety of DSLs for model transformation.

In EVL+Strace, a transformation definition consists

of a trace metamodel, EOL operations, and EVL con-

straints (Fig. 21).

The trace metamodel defines domain-specific types

of links and link ends. Trace models contain copies of

all relevant elements of source and target models, as

well as links connecting these elements. By means of a

rich trace model, it is possible to detect any category of

changes to the participating models, including creation

and deletion of objects and links, as well as modification

of attribute values.

The behavior of the synchronizer is defined by EOL

operations, i.e., operations for queries and updates writ-

ten in the Epsilon Object Language, and EVL con-

straints, i.e., checks augmented with repair actions writ-

ten in the Epsilon Validation Language. Each constraint

is directed and checks an inconsistency between the

trace model and one of the participating models which

is caused by a change to this model. The corresponding

EOL
Operations

EVL
Constraints

Source
Metamodel

Target
Metamodel

Trace
Metamodel

Fig. 21 EVL+Strace artifacts and their dependencies



Benchmarking Bidirectional Transformations 25

TraceModel

TraceLink TraceLinkEnd

Reg2RegTraceLink

FamilyRegisterSourceEnd

familyRegisterSourceEndType : EObject

PersonTargetEnd

name : String
personTargetEndType : EObject

PersonRegisterTargetEnd

personRegisterTargetEndType : EObject

FamilyMember2PersonsTraceLink

FamilyMemberSourceEnd

name : String
familyMemberSourceEndType : EObject

FamilySourceEnd

name : String
familySourceEndType : EObject

fatherInverse

father

daughtersInverse

daughters

...

familiesInverse

families
srcRefFamilyMember

refFamilyMember2Persons

refFamilyMember2Persons

srcRefFamily

refFamilyMember2Persons

trgRefPerson persons

persons
Inverse

srcRefFamilyRegister

refReg2Reg
refReg2Reg

trgRefPersonRegister

links linkEnds

Fig. 22 Trace metamodel for the Families-to-Persons benchmark (without multiplicities)

repair action propagates this change to the trace model

and the opposite model.

6.4.1 Classification

EVL+Strace is restoration-based : The transformation

developer specifies how to detect and repair inconsis-

tencies by explicitly programming fCR and bCR. With

respect to horizontal and vertical inputs, EVL+Strace

is classified as initial-diag-based and realizes the tool

architecture displayed in Fig. 8 on the left-hand side.

As the transformation developer is free to imple-
ment both consistency checks and repairs, adherence

to any formal property cannot be guaranteed in gen-

eral. For example, an update that changes the trace

model but preserves consistency can be responded to

by an – according to hippocraticness unnecessary – re-

pair action. Correctness is also not guaranteed: repair

actions are specified in a procedural way and may fail

to restore consistency or can contradict the checks for

consistency.

In EVL+Strace, the consistency relation is defined

explicitly as a set of constraints. The overall consistency

relation is composed of two sets of directed constraints;

the transformation developer is responsible for the mu-

tual consistency of forward and backward constraints.

Constraint restoration is also explicitly specified and

controlled by programmed repair operations.

EVL+Strace is designed primarily for concurrent

synchronization, i.e., consolidating changes applied to

both participating models. Directed synchronization is

included as a special case: If only one of the partici-

pating models has been modified, constraints may be

violated only between this model and the trace model.

Synchronization is performed on-demand and inter-

actively : Each constraint violation is reported to the

user, who has to confirm (or reject) the respective re-

pair action. Automatic synchronization is possible, but

requires rewriting of EVL constraints (explained in the

following section).

6.4.2 Benchmark solution with EVL+Strace

The following description is based on the solution in

EVL+Strace submitted to TTC 2017 [47]. Figure 22

displays the trace metamodel for the Families-to-Persons

benchmark. Specific types of trace links and trace link

ends are defined by subclassing built-in abstract super-

classes TraceLink and TraceLinkEnd, respectively. In the

case of the Families-to-Persons benchmark, the trace

metamodel defines two types of trace links for relating

family and person registers as well as for relating family

members along with their families with persons. Each

trace link references a set of trace link ends, which may

be considered proxies of source or target model objects.

Trace link ends store links to source or target model

objects with the help of attributes of type EObject. In

addition, trace link ends may store attribute values and

may be connected by links. In this way, the trace model

may shadow the relevant parts of the source and target

models.

Listing 7 gives an example of an EVL constraint

along with its repair action. The constraint refers to

family members in the families models (Line 1). As

indicated by the name of the constraint (Line 2), it



26 Anthony Anjorin et al.

Listing 7 Example of an EVL constraint

1 context Source!FamilyMember{
2 constraint isNewMale{
3 guard: self.isMale ()
4 check: not self.isNew ()
5 message:self+’ is a new inserted element
6 in the source model ’
7 fix{
8 title:’Insert its corresponding elements
9 in the trace and target models ’

10 do {
11 var familyMemberSourceEnd
12 = addFamilyMemberSourceEnd(self);
13 var family;
14 if(self.isFather ())
15 family = self.fatherInverse;
16 else
17 family = self.sonsInverse;
18 family.satisfies ("isNew ");
19 var familySourceEnd
20 = family.getTraceLinkEnd ();
21 if(self.isFather ())
22 familyMemberSourceEnd
23 .setFatherInverse(familySourceEnd );
24 else
25 familyMemberSourceEnd
26 .setSonsInverse(familySourceEnd );
27 var person = insertMale(family ,self);
28 var personTargetEnd
29 = addPersonTargetEnd(person );
30 addFamilyMember2PersonsTraceLink(
31 familySourceEnd ,
32 familyMemberSourceEnd ,
33 personTargetEnd );
34 copySrc2Trg ();
35 }
36 }
37 }
38 }

handles the creation of a new male member. Its guard

(Line 3) ensures that it may be applied only to male

family members. The check (Line 4) defines that the

member must not be new, i.e., there must be a cor-

responding person in the persons model. If this check
fails, a meaningful message (Lines 5–6) is created and

displayed in the user interface. The fix (Lines 7–36) has

a title (Lines 8–9) explaining the repair action to the

user, as well as a do part (starting at Line 10) which

defines all operations to restore consistency in a proce-

dural way. Note that these operations refer both to the

persons model and the trace model.

The Families-to-Persons benchmark deviates from

the primary synchronization scenario targeted by EVL-

+Strace in two respects. First, the benchmark com-

prises only alternating direct rather than concurrent

changes, i.e., only one model is changed, and the op-

posite model is updated to restore consistency. Second,

the test suite is executed automatically, without any

user interaction. As EVL+Strace is designed to sup-

port the more general case of concurrent synchroniza-

tion, it can of course also handle the simplified case of

directed synchronization. For automatic synchroniza-

tion, the constraint definitions for interactive synchro-

nization (as shown in Listing 7) have to be modified by

moving the do part into the check part, as well as elimi-

nating the message and the fix parts. These mechanical

transformations were applied throughout the EVL code

to execute the Families-to-Persons benchmark without

user interaction.

6.5 JTL

JTL (Janus Transformation Language) [11,20] is a model

transformation language specifically tailored to support

bidirectionality and non-determinism. JTL is EMF com-

patible and provides tool support via an Eclipse plugin.

A transformation developer using JTL provides a

set of constraints specifying a consistency relation. To-

gether with the metamodels, these constraints are trans-

formed to an Answer Set Programming (ASP) [24] prob-

lem, which an ASP solver can use to enable consistency

restoration.

JTL reuses QVT-R syntax [43], but deviates from

its semantics deliberately and significantly. In particu-

lar, JTL maintains a persistent trace, in contrast to the

purely state-based design of QVT-R. Second, JTL takes

non-determinism into account by generating all possi-

ble models which may be obtained by selecting one of

multiple rules being applicable to a given match. From

these candidates, the user has to select the desired re-

sult, which is then used in further synchronizations.

6.5.1 Classification

A summary of the features of JTL is provided in Ta-

ble 2. JTL is restoration-based : the underlying con-

straint solver takes an inconsistent state of all models

and figures out how to restore consistency. The exact

delta applied is irrelevant for this strategy. With re-

spect to horizontal and vertical inputs, therefore, JTL

realizes an initial-diag-based architecture, handling cor-

respondences as additional constraints. JTL guarantees

correctness with respect to the specified set of con-

straints, and hippocraticness as the current state of all

models can always be taken as a solution if it already

fulfills all constraints (and is thus already consistent).

JTL requires an explicit consistency relation defined

as a set of constraints (Prolog-like “rules”). Consis-

tency restoration is implicit : the underlying constraint

solver automatically derives fCR and bCR based on the

provided constraints. JTL currently supports directed,

on-demand, and interactive synchronization (which re-

duces to automatic synchronization in the case of de-

terministic transformations).



Benchmarking Bidirectional Transformations 27

Listing 8 The Families-to-Persons transformation in JTL

1 transformation Families2Persons(
2 family: Families , person: Persons) {
3 top relation FamilyRegister2PersonRegister {
4 enforce domain family
5 fr : Families :: FamilyRegister { };
6 enforce domain person
7 pr : Persons :: PersonRegister { };
8 where {
9 Father2Male(fr ,pr);

10 Mother2Female(fr,pr);
11 Son2Male(fr,pr);
12 Daughter2Female(fr,pr); }
13 }
14 relation Father2Male {
15 n: String;
16 sn: String;
17 enforce domain family
18 fr : Families :: FamilyRegister {
19 families = f : Families :: Family {
20 name = sn ,
21 father = m : Families :: FamilyMember {
22 name = n
23 }
24 }
25 };
26 enforce domain person
27 pr : Persons :: PersonRegister {
28 persons = m : Persons ::Male {
29 name = n + sn
30 }
31 };
32 }
33 relation Mother2Female { ... };
34 relation Son2Male { ... }
35 relation Daughter2Female { ... }
36 }

6.5.2 Benchmark solution with JTL

The Families-to-Persons case implemented in JTL is de-

picted in Listing 8. JTL adopts a QVT-R [43] like tex-

tual concrete syntax. On Line 2, variables family and

person are declared to match models conforming to the

Families and Persons metamodels, respectively. When

the top relation FamilyRegister2PersonRegister holds,

then the two models are consistent. In the where block,

further relations can be specified as required conditions

for the top relation to hold. In this case, the top rela-

tion holds when the relations Father2Male, Mother2Male,

Son2Male, and Daughter2Male, all hold. Variables bound

in one relation, such as fr and pr, can be passed to

invoked relations. In addition to structural constraints

represented as object patterns in the relations, it is pos-

sible to specify attribute constraints, e.g., on Line 29.

Per default, JTL handles non-determinism by gen-

erating all possible models and allowing the user to iter-

ate through them one by one. To implement the bench-

mark, which requires runtime configuration to make the

tests deterministic, additional constraints have to be

provided so the solver can determine the desired solu-

tion. Currently, these additional constraints have to be

specified on a comparably low level of abstraction as

direct input for the underlying constraint solver, and

not with the normal JTL concrete syntax.

6.6 NMF Synchronizations

NMF Synchronizations [29] is a bx language realized

as an internal domain-specific language with C# as a

host language. To program a bx with NMF Synchro-

nizations, a transformation developer specifies a set of

consistency relations between the elements of the source

and target models. Starting with a top-most relation,

representing the consistency of the entire models, each

relation can “invoke” other relations, which must hold

for this relation to be satisfied. Leaf relations can be,

for example, identity of primitive types such as strings.

This coupling of relations is specified with so called

synchronization blocks, one of which is depicted schemat-

ically in Fig. 23. The relations are represented by hor-

izontal arrows: ΦA−C between source elements of type

A and target elements of type C, and ΦB−D between

source elements of type B and target elements of type

D. The base relation ΦA−C holds only if the target re-

lation ΦB−D holds for certain pairs of (B,D) elements,

determined by the intra-model lenses f and g (depicted

as vertical arrows in Fig. 23).

A target relation may occur as base relation in an-

other synchronization block, resulting in nested syn-

chronization blocks. Furthermore, a relation may play

the role of a base relation in multiple synchronization

blocks, meaning that multiple consistency relations are

required for making a pair of elements in the base rela-

tion consistent.

The intra-model lenses f and g are each composed of

a get and a put function: f.get : A→ B, g.get : C → D,

and f.put : A×B → A, g.put : C ×D → C.

As described above, the get function is a simple

model query indicating how the base and target rela-

tions are coupled, i.e., for which elements the target

relation must hold with respect to a given pair of ele-

ments in the base relation. In the simplest cases, this

can be a getter navigating to the properties or contained

children of an object.

A C

B D

f g

AC

BD

Fig. 23 Schematic view of a synchronization block



28 Anthony Anjorin et al.

The put functions implement updates, i.e., a way of

propagating changes of elements in the target relation

back to elements in the base relation. As synchroniza-

tion blocks pair such updates, they can be viewed as an

implementation of update propagation (fUP and bUP).

NMF Synchronizations uses the incrementalization

system NMF Expressions [31] to obtain notifications

when the result of a get function changes. Therefore,

it does not have to traverse the model to identify a

change.

6.6.1 Classification

As synchronization blocks can be viewed as pairs of up-

dates (and queries), the style of specification is proba-

bly closest to propagation-based. The addressed appli-

cation scenario is o-delta-corr-based : The NMF solu-

tion accepts o-deltas and a corr as vertical and hor-

izontal input, respectively. Hinkel et al. [29] provide

a proof for correctness and hippocraticness under the

assumption that the transformation developer ensures

that get-put and put-get laws are actually satisfied for

all intra-model lenses. The consistency relation between

two models is specified explicitly by a set of coupled syn-

chronization blocks, using only the get operations. This

combination of relations coupled by queries is similar to

a JTL program and can be best viewed as a constraint-

based specification of consistency.

Consistency restoration is implemented by provid-

ing corresponding put operations for each synchroniza-

tion block. An explicit specification of put satisfying

the round-trip laws of intra-model lenses must be pro-

vided by the transformation developer in the general

case. In simple situations, however, a put operation may

be automatically derived from the get operation. The

transformation developer can also reuse put implemen-

tations from a library of intra-model lenses. Further-

more, many details such as the order in which synchro-

nization blocks are inspected and used to propagate

parts of an update are fully automated by the frame-

work and in this sense implicit.

While NMF Synchronization can be used to support

many other cases [29], its sweet spot is for directed, live

and automatic synchronization. This is also how the

solution to the Families-to-Persons case is implemented.

6.6.2 Benchmark solution with NMF

The following description of the NMF Synchronizations

solution to the Families-to-Persons benchmark is based

on the corresponding TTC 2017 paper [28]. Two syn-

chronization blocks are required for the transformation

and are depicted in Fig. 24: (i) a block with the top-level

relation Reg2Reg as base, and Mem2Mem as target, and

(ii) a block with Mem2Mem as base and the identity

relation on strings as target.

Listing 9 depicts fragments of the solution in C#.

The two relations are implemented as synchronization

rules subclassing the generic class SynchronizationRule

(Lines 2–15). The actual synchronization blocks are de-

fined by overriding the method DeclareSynchronization

(Lines 4 and 12). This is basically just a textual repre-

sentation of Fig. 24.

FamilyMember Person

string string

ΦMem2Mem

IdString

.GetFullName() .Name

FamilyMember* Person*
ΦMem2Mem

FamilyRegister PersonRegister
ΦReg2Reg

.FamilyMembers() .Persons

Fig. 24 Synchronization blocks for benchmark solution

Listing 9 Solution in NMF Synchronizations

1 ...
2 public class Reg2Reg:SynchronizationRule <
3 FamilyRegister , PersonRegister >{
4 public override void DeclareSynchronization (){
5 SynchronizeMany(SyncRule <Mem2Mem >(),
6 fam=>new FamilyMemberCollection(fam),
7 persons=>persons.Persons );
8 }
9 }

10 public class Mem2Mem:SynchronizationRule <
11 IFamilyMember , IPerson >{
12 public override void DeclareSynchronization (){
13 Synchronize(m=>m.GetFullName (), p=>p.Name);
14 }
15 }
16 ...
17
18 private class FamilyMemberCollection
19 :CustomCollection <IFamilyMember >{
20 ...
21 public override void Add(IFamilyMember item){
22 ...
23 }
24 ...
25 }
26
27 [LensPut(typeof(Helpers)," SetFullName ")]
28 [ObservableProxy(typeof(Helpers)," GetFNameInc ")]
29 public static string
30 GetFullName(this IFamilyMember member ){
31 return fullName.Evaluate(member );
32 }
33 public static INotifyValue <string >
34 GetFNameInc(this IFamilyMember member ){
35 return fullName.Observe(member );
36 }
37 public static void SetFullName(
38 this IFamilyMember member ,
39 string newName ){
40 ...
41 }
42 private static ObservingFunc <
43 IFamilyMember ,string > fullName =
44 new ObservingFunc <IFamilyMember ,string >
45 (m=>m.Name == null ? null:
46 (( IFamily)m.Parent ).Name + ", " + m.Name);
47 ...



Benchmarking Bidirectional Transformations 29

Concerning the first synchronization block Reg2Reg,

the target intra-model lens .Persons is simple enough

(the get function merely collects the elements obtained

via a multi-valued reference) so updates (the put func-

tion) can be inferred automatically. In contrast, a cus-

tom collection FamilyMemberCollection is required for

the source intra-model lens, implemented on Lines 18–

25. This helper class encapsulates the logic for deter-

mining the elements of the collection (traversing ref-

erences to families and members sequentially), insert-

ing an already created family member to the collec-

tion (Line 21) at the appropriate location in the fami-

lies model, depending on the configuration parameters

PreferExistingToNewFamily and PreferParentToChild.

Concerning the second synchronization block Mem2-

Mem, the situation is similar: the target intra-model lens

.Name can be handled automatically, while the source

intra-model lens .GetFullName() has to be implemented

manually on Lines 27–46. On Line 27, an annotation is

used to provide SetFullName as the put implementation

for GetFullName. The custom method SetFullName sets

the full name of a family member, potentially moving

the member to a different family.

Finally, the annotation on Line 28 and the imple-

mentation of the helper method fullName on Lines 42–

46 indicate that the NMF Synchronization framework

provides hooks into infrastructure for an incremental-

ization of the intra-model lens. The reader is referred

to Hinkel et al. [30] for further details.

6.7 SDMLib

SDMLib, short for Story Driven Modeling Library,13 is

a Java library to support Story Driven Modeling [41], a

formalism based on graph transformations [17]. SDM-

Lib provides an internal DSL with Java as a host lan-

guage. Although SDMLib is not a bx tool, in the sense

that it does not provide any extra support especially for

developing bx, it is nonetheless included here as a “gen-

eral purpose” model transformation tool against which

bx tools should also be compared.

As models can be viewed as attributed, typed graphs,

model transformations can also be regarded as a prob-

lem in the domain of graph transformations. A graph

rewrite rule specifies the replacement of a graph pat-

tern (left-hand side) by a subgraph to be embedded

into the overall host graph. Graph rewrite rules can

be used to specify not only in-place model transfor-

mations, but also model-to-model transformations by

applying the rules to multiple graphs. Graph rewrite

rules are declarative in the sense that the exact order

13http://www.sdmlib.org

in which to traverse the host graph and check for or

replace patterns is not specified.

6.7.1 Classification

The solution to the benchmark with SDMLib follows a

restoration-based architectural style; fCR and bCR are

implemented with graph rewrite rules.

The solution addresses the initial-diag-based appli-

cation scenario (Fig. 8). A diag is taken as input, and

the dependent model is manipulated until both models

are consistent again.

No formal guarantees are provided by SDMLib as

fCR and bCR are specified separately and indepen-

dently. It is left up to the transformation developer to

ensure that the implementations are not contradictory.

As with the BXtend solution, this can be viewed as an

advantage; the bx programmer may freely decide what-

ever is necessary to solve the current task.

The SDMLib solution has no explicit notion of con-

sistency as it is implicitly given by the implemented

pair of fCR/bCR. Accordingly, synchronization control

is explicit, and programmed by providing suitable graph

rewrite rules. The SDMLib solution was developed with

the benchmark in mind and thus supports directed, on-

demand, automatic synchronization.

6.7.2 Benchmark solution with SDMLib

The following description is based on the SDMLib so-

lution for the Families-to-Persons benchmark at TTC

2017 [56]. As SDMLib is designed for in-place trans-

formations on a single host graph, the solution uses a

single metamodel as depicted in Fig. 25. To support

incrementality efficiently, additional unidirectional ref-

erences between FamilyRegister and FamilyMember, and

PersonRegister and Person are used to detect changed

elements. Finally, the correspondences are represented

using two bidirectional references. The SDMLib solu-

tion thus operates on a single graph comprising the con-

tents of both models as well as explicit correspondence

links between respective elements.

The core of the SDMLib solution consists of two

graph rewrite rules, one for each direction. While graph

rewrite rules are typically presented using a visual con-

crete syntax, we use the actual textual concrete syntax

provided by the tool to enable and simplify a compari-

son with all other solutions.

Listing 10 depicts the graph rewrite rule for the

forward transformation using SDMLib’s internal DSL,

embedded into Java. The method for the graph rewrite

rule uses code generated from the graph metamodel de-

picted in Fig. 25.



30 Anthony Anjorin et al.

FamilyRegister

Family

name : String

FamilyMember

name : String

father
0..1

fatherOf
0..1

mother
0..1

motherOf
0..1

sons
0..*

sonOf
0..1

daughters
0..*

daughterOf
0..1

families
0..*

register
1

PersonRegister

Person

name : String
birthday : Date

persons
0..*

register
1

Male Female

getFamily()

c
0..*

c
0..*

famReg
0..1

persReg
0..1

cp
0..1

cfm
0..1

Fig. 25 SDMLib model used for the benchmark

The statements on Lines 2–9 define story pattern

objects for the family register, the person register, and

a family member, which need to be matched in the fam-

ilies model; the links connecting these objects are added

implicitly to the story pattern by the invoked methods

(e.g., createCPO()).

Listing 10 Forward transformation in SDMLib

1 private void transformForward () {
2 familyRegisterPO = new FamilyRegisterPO ()
3 .withPatternObjectName("fr");
4 PersonRegisterPO personRegisterPO =
5 familyRegisterPO.createPersonRegisterPO ()
6 .withPatternObjectName("pr");
7 FamilyMemberPO memberPO = familyRegisterPO
8 .createCPO ()
9 .withPatternObjectName("fm");

10
11 // there is an old corresponding person
12 memberPO.startSubPattern ();
13 PersonPO oldPersonPO = memberPO.createCpPO ()
14 .withName("oldP");
15 oldPersonPO.createCondition(p ->
16 ensureNameAndGender(p));
17 memberPO.endSubPattern ();
18
19 // no corresponding person
20 memberPO.startNAC ();
21 memberPO.createCpPO ()
22 .withPatternObjectName("noOldP");
23 memberPO.endNAC ();
24 MalePO personPO = memberPO
25 .createCpMalePO(Pattern.CREATE)
26 .withPatternObjectName("newP");
27 personPO.createRegisterLink(
28 personRegisterPO ,
29 Pattern.CREATE );
30 personPO.createCondition(p ->
31 ensureNameAndGender(p));
32
33 familyRegisterPO.createLink(
34 memberPO ,
35 Pattern.DESTROY );
36
37 familyRegisterPO.rebind(familyRegister );
38 familyRegisterPO.doAllMatches ();
39 }

Lines 12-17 handle the case that a corresponding

person object already exists. This case is realized with

an optional subpattern, which is started at Line 12 and

is terminated at Line 17. The pattern is composed of

an old person object, connected to the family mem-

ber object by a correspondence link. If pattern match-

ing succeeds, the method ensureNameAndGender is invoked

to restore consistency. Lines 20–31 deal with the case

where there is no corresponding person object. This is

handled with a negative application condition, defined

on Lines 20–23. On Lines 24–31, elements of story pat-

terns are created that define the actions to be performed

when the negative application condition holds: A per-

son object has to be created and linked to the person

register; the method ensureNameAndGender is then called

to establish consistency with the family object. Finally,
the temporary link between the family register and the

family member — which is set in the course of changes

to the families model — is matched and then removed

(Lines 33–35), the story pattern object for the family

register is bound (Line 37), and the pattern is applied

to all matches (Line 38).

7 Evaluation of benchmark solutions

After presenting seven solutions, we now evaluate them

with respect to three measurable properties: concise-

ness, i.e., the size of the transformation definition mea-

sured in terms of lines of code (Sect. 7.1); conformance

to requirements, measured in terms of passed and failed

test cases (Sect. 7.2); and performance, measured in

terms of runtime (Sect. 7.3). We leave qualitative prop-

erties such as level of abstraction or cognitive complex-

ity to future work. We conclude the evaluation by dis-

cussing threats to validity in Sect. 7.4.



Benchmarking Bidirectional Transformations 31

Table 3 Size of the transformation definitions of all solutions

BiGUL BXtend eMoflon∗ EVL+Strace JTL† NMF SDMLib

Lines of code 176 211 192 + 25 1299 168 + 59 279 236

Number of
words

1010 565 256 + 81 2878 260 + 513 607 427

Number of
characters

6197 7571 3195 + 1382 50109 4338 + 4415 7215 6761

∗The two numbers in each row indicate the amount of native eMoflon code + additional Java code.
†The two numbers in each row indicate the amount of native JTL code + additional code for the constraint solver.

7.1 Size of transformation definitions

As all the discussed solutions support a textual con-

crete syntax with which transformation definitions can

be specified, a quantitative impression of the size of the

transformation definitions can be obtained by count-

ing the number of lines of code (excluding empty lines

and comments), the number of words (character strings

separated by whitespace) in these lines, and the number

of characters in these words. The values obtained for

these metrics are depicted in Table 3:

– All solutions apart from EVL+Strace require ap-

proximately the same number of lines of code. The

EVL+Strace solution is composed of a trace meta-

model, EVL constraints, and EOL operations. The

solution is quite verbose, but can be generated par-

tially from a declarative specification [46].

– Since the number of words approximates the num-

ber of lexical units, it is considered as a more accu-

rate measure of the solution size than the number

of lines. With respect to this measure, the declara-
tive parts of the solutions in eMoflon and JTL are

very concise; however, additional code is required to

control the configurable backward transformation.

SDMLib, BXtend, and NMF allow for compact so-

lutions, as well, although both transformation di-

rections have to be specified explicitly in SDMLib

and BXtend. Notably, the size of the BiGUL so-

lution exceeds the size of these solutions although

one transformation direction (get) is derived from

its opposite (put). This is probably due to the code

required for horizontal alignment (hAln), as BiGUL

is the only tool that does not require (and thus can-

not exploit) provided corrs.

– Although the number of characters depends heavily

on the length of identifiers and is thus a very ques-

tionable metric, it still yields almost the same rank-

ing as for number of words. In the case of BXtend vs.

NMF, however, it indicates that fundamental con-

clusions cannot be drawn from minor differences in

number of words.

7.2 Conformance to requirements

As far as the benchmark is concerned, a solution is con-

sidered to conform to requirements if it passes all test

cases. The current test suite for the Families-to-Persons

case consists of 34 test cases, which are classified accord-

ing to the taxonomy introduced in Sect. 5.1 (Fig. 17). In

Table 4, the test cases are grouped into four categories,

according to the direction (forward or backward) and

granularity of synchronization (batch or incremental).

For more detailed information (regarding not only the

test suite, but the test results for all solutions), a read-

only Google spreadsheet is available.14

Please note that with respect to the feature model of

Fig. 17, the test suite achieves almost full feature cover-

age, i.e., each feature (but one) is covered by at least one

test case. The feature round trip constitutes the only ex-

ception. As argued earlier (Sect. 3.2.3), round-trip laws

are not explicitly tested because the required round-trip

behavior is implied if directed synchronization is correct

and hippocratic (which is tested by directed test cases).

With respect to results, we distinguish four rather

than two types of results: (1) tests that pass and can

be expected to pass as the features of the test match

the features of the solution (expected passes), (2) tests

that fail and can be expected to fail as the features of

the test do not match the features of the solution (ex-

pected fails), (3) tests that pass even though the fea-

tures of the test do not match the features of the solu-

tion (unexpected passes), and finally (4) tests that fail

even though the features of the test match the features

of the solution (unexpected fails).

Table 5 summarizes the test results, grouped into

the same categories as the test cases shown in Table 4.

The bottom part aggregates the numbers of the dif-

ferent categories. Before comparing the test results of

different solutions, we analyze some global metrics de-

rived from the table.

14http://bit.ly/2RXABuw

http://bit.ly/2RXABuw


32 Anthony Anjorin et al.

Table 4 Classification of test cases according to the taxonomy

Category Name of test Direction
Horizontal

input
Vertical
input

Change
type

Runtime
config

Batch FWD

testInitialiseSynchronisation fwd none initial-based - no

testFamilyNameChangeOfEmpty fwd none initial-based attribute no

testCreateFamily fwd none initial-based add no

testCreateFamilyMember fwd none initial-based add no

testDuplicateFamilyMemberNames fwd none initial-based add no

testNewDuplicateFamilyNames fwd none initial-based add no

testNewFamilyWithMultiMembers fwd none initial-based add no

Batch BWD

testCreateFamilyMembers-
InExistingFamilyAsParent

bwd none initial-based add yes

testCreateMalePersonAsSon-
InNewFamily

bwd none initial-based add yes

testCreateMalePersonAsSon-
InExistingFamily

bwd none initial-based add yes

testCreateFamilyMembersIn-
ExistingFamilyAsChildren

bwd none initial-based add yes

testCreateDuplicateFamilyMembers-
InExistingFamilyAsChildren

bwd none initial-based add yes

testCreateMalePersonAsParent-
InNewFamily

bwd none initial-based add yes

testCreateMalePersonAsParent-
InExistingFamily

bwd none initial-based add yes

testCreateFamilyMembersInNew-
FamilyAsParents

bwd none initial-based add yes

testCreateDuplicateFamilyMembers-
InNewFamilyAsParents

bwd none initial-based add yes

testCreateFamilyMembersInNew-
FamilyAsChildren

bwd none initial-based add yes

testCreateDuplicateFamilyMembers-
InNewFamilyAsChildren

bwd none initial-based add yes

Incr. FWD

testIncrementalInserts fwd state-based state-based add no

testIncrementalDeletions fwd corr-based s-delta-based del no

testIncrementalRename fwd corr-based s-delta-based attribute no

testIncrementalMove fwd state-based s-delta-based
move

(del+add)
no

testIncrementalMixed fwd state-based s-delta-based add, del no

testIncrementalRoleChange fwd state-based s-delta-based add, del no

testStability fwd state-based state-based - no

testHippocraticness fwd state-based state-based attribute no

Incr. BWD

testIncrementalInsertsFixedConfig bwd state-based state-based add yes

testIncrementalInsertsDynamic-
Config

bwd state-based state-based add yes

testIncrementalDeletions bwd state-based state-based del yes

testIncrementalRenamingDynamic bwd corr-based s-delta-based attribute yes

testIncrementalMixedDynamic bwd state-based s-delta-based add, del yes

testIncrementalOperational bwd state-based o-delta-based add yes

testStability bwd state-based state-based - yes

testHippocraticness bwd state-based state-based attribute yes



Benchmarking Bidirectional Transformations 33

Table 5 Aggregate test results, grouped into categories and classified as expected/unexpected passes/fails

Category Result BiGUL BXtend eMoflon EVL+Strace JTL NMF SDMLib

Batch FWD

expected pass 7 7 7 6 7 7 7

expected fail 0 0 0 0 0 0 0

unexpected pass 0 0 0 0 0 0 0

unexpected fail 0 0 0 1 0 0 0

Batch BWD

expected pass 11 11 11 7 11 11 11

expected fail 0 0 0 0 0 0 0

unexpected pass 0 0 0 0 0 0 0

unexpected fail 0 0 0 4 0 0 0

Incr. FWD

expected pass 3 8 5 8 2 6 8

expected fail 5 0 0 0 0 0 0

unexpected pass 0 0 0 0 0 0 0

unexpected fail 0 0 3 0 6 2 0

Incr. BWD

expected pass 4 7 5 4 4 7 5

expected fail 3 0 1 0 1 0 1

unexpected pass 0 1 0 1 0 0 0

unexpected fail 1 0 2 3 3 1 2

Total

expected pass 25 33 28 25 24 31 31

expected fail 8 0 1 0 1 0 1

unexpected pass 0 1 0 1 0 0 0

unexpected fail 1 0 5 8 9 3 2

7.2.1 Global analysis

Let ttall and ptall denote the total number of all and all

passed test cases, respectively. The global success rate

srall is then defined as follows:

srall =
ptall
ttall

(1)

From Table 5, we obtain srall = 199
7×34 ≈ 0.84. Thus,

about 16% of all test cases fail, even though the solution
authors tried hard to satisfy all test cases. This number

demonstrates that the Families-to-Persons benchmark

is indeed challenging, as claimed in Sect. 3.3.

A refinement of the preceding analysis reveals a sig-

nificant difference between batch and incremental cases.

For batch test cases, we obtain srbat = 121
7×18 ≈ 0.96; in

contrast, srinc = 78
7×16 ≈ 0.70. Thus, incremental test

cases are much more difficult to pass than batch test

cases. Batch cases are designed to test basic function-

ality, which the solution authors should address first,

before proceeding to deal with incremental behavior.

Similarly, we may compare forward and backward

test cases. For forward cases, the success rate amounts

to srfwd = 88
7×15 ≈ 0.84. For backward cases, we obtain

essentially the same success rate: srbwd = 111
7×19 ≈ 0.84.

For a more detailed analysis, we can compare forward

and backward test cases for batch and incremental test

cases separately and obtain: srfwd−batch = 48
7×7 ≈ 0.98

vs. srbwd−batch = 73
7×11 ≈ 0.95 and srfwd−incr = 40

7×8 ≈

0.71 vs. srbwd−incr = 38
7×8 ≈ 0.68. While these values

now indicate that the success rate in the backward di-

rection is indeed slightly lower, this still does not pro-

vide strong support for our expectation that the config-

urable backward transformation should be considerably

more difficult to implement than the forward transfor-

mation.

Finally, we examine some metrics concerning our

distinction between expected and unexpected results.

The prediction quality is defined by the relative number

of expected results. As introduced already above, let

ttall denote the total number of test cases. Furthermore,

let etall denote the number of test cases with expected

results. The prediction quality pqall is defined as the

quotient of these numbers:

pqall =
etall
ttall

(2)

From the table, we obtain the value pqall = 208
7×34 ≈

0.87. Thus, the prediction rate, based on the compar-

ison of required and provided architectural features, is

quite high. 28 out of 30 unexpected results are unex-

pected failures. Due to bugs in the solutions or technical

limitations of the respective bx tools not covered by our

feature model, it is not realistic to expect a prediction

value close to 100%.

To conclude this subsection, we analyze the unex-

pected pass ratio, i.e., the relative number of test cases



34 Anthony Anjorin et al.

yielding unexpected passes. Let upall denote the total

number of unexpected passes. We define the unexpected

pass ratio uprall as follows:

uprall =
upall
ttall

(3)

For this metric, we obtain the value uprall = 2
7×34 ≈

0.01, i.e., only 1% of the test cases are passed even

though the respective tool does not possess the required

features. This indicates a high quality of the test cases,

which should provoke failures as often as possible.

Unexpected passes occur only in a test case which

requires o-deltas (because the order in which persons

are inserted affects the resulting families model). BX-

tend and EVL+Strace pass this test case unexpectedly.

Although these two solutions do not exploit o-deltas,

they are still able to pass the test by exploiting the fact

that the EMF collections used are ordered. In the fu-

ture, we plan to improve order-sensitive tests by, e.g.,

scrambling collections so this assumption fails.

7.2.2 Analysis of solutions

To compare the solutions, we employ the values of the

success rate metric defined in Equation 1 (Table 6).

As mentioned earlier, this metric does not take into

account which test cases a solution may be expected

to pass, based on the features of the respective tool on

one hand and the features required by the test cases

on the other hand. Therefore, we define an additional

metric which is based only on those test cases which

the solution is expected to pass. This metric is called

normalized success rate:

nsrall =
epall

ttall − (efall + upall)
(4)

For the normalized success rate, we count only the

number epall of expected passes. From the number of all

test cases ttall, the number of all test cases is subtracted

in which the solution exhibits either an expected fail

(efall) or an unexpected pass (upall). The normalized

success rate is the quotient of these numbers.

Applied to our test results from Table 5, we obtain

values for the success rates and the normalized suc-

cess rates which are roughly the same for all but one

solution: For BiGUL, the normalized success rate ex-

ceeds the success rate considerably. This is because the

solution in BiGUL is the only one that does not main-

tain correspondences, resulting in a high number of ex-

pected failures. BiGUL has been designed for a different

use case (view updates with round-trip properties) in

which maintenance of correspondences is not feasible.

The solution could be extended with correspondences

which, however, must be maintained “manually”.

For the remaining solutions, slight differences be-

tween the success rate and the normalized success rate

stem from the fact that the corresponding tools are ex-

pected to fail if o-deltas are required. NMF is the only

tool which supports o-deltas, and thus the only tool

where both variants of success rates should always co-

incide. For the other tools, only slight differences are

observed (if any) because there is only a single test case

requiring o-deltas.

Tools such as eMoflon and JTL provide (different

kinds of) well-behavedness guarantees. These tools trade

well-behavedness guarantees for expressiveness: In the

Families-to-Persons benchmark, the required behavior

of the backward transformation differs from the behav-

ior of the forward transformation considerably. eMoflon

and JTL are essentially based on symmetric specifi-

cations of consistency relations and thus have difficul-

ties in achieving conformance. For this reason, external

mechanisms (Java and ASP programs) are exploited to

improve synchronization behavior.

NMF pursues a compromise between well-behaved-

ness guarantees and expressiveness: Certain parts of

bidirectional transformations may be specified declara-

tively, other parts have to be programmed. While this

hybrid approach improves expressiveness, well-behaved-

ness guarantees hold only under certain assumptions

(intra-model lenses), which must be proved manually.

Finally, in BXtend, SDMLib, and EVL+Strace, both

transformation directions have to be specified explicitly.

On the one hand, this implies that no well-behavedness

guarantees may be provided at all. On the other hand,

high conformance to the requirements may be achieved,

because of the flexibility gained by separate specifica-

tions of forward and backward transformations. Never-

theless, EVL+Strace achieves only a rather low success

rate (note, however, the remarks in Sect. 7.4.3).

7.3 Performance

To assess and compare the runtime scalability with re-

spect to increasing model size for each solution, two

experiments were conducted in both forward and back-

ward directions (yielding four sets of measurements):

(i) initial-batch-based transformations in forward and

backward directions, and (ii) delta-corr-based transfor-

mations in forward and backward directions.

The batch transformations test how the solutions

scale when creating the dependent model from scratch

from a master model of increasing size (103 up to 106

model elements, i.e., nodes and edges). The incremen-

tal (delta-corr-based) transformations apply the exact



Benchmarking Bidirectional Transformations 35

Table 6 Success rates of solutions

Metric BiGUL BXtend eMoflon EVL+Strace JTL NMF SDMLib

srall 0.74 1.00 0.82 0.76 0.71 0.91 0.91

nsrall 0.96 1.00 0.85 0.76 0.73 0.91 0.94

same edit (adding a single family member/person) to

master models of increasing size, for which consistency

can be theoretically maintained by applying the same

corresponding edit (adding a single person/family mem-

ber) to the dependent model in each case. This means

that we test to what extent incremental consistency

maintenance is decoupled from model size for each so-

lution.

7.3.1 Experiment setup

All tests were performed on the same machine and in

isolation for each solution. A standard machine with

an Intel Core i7-4770 CPU was used, running at 3.40

GHz, with 16 GB of DDR3 RAM and with Microsoft

Windows 10 64-bit as operating system. Java 1.8.0 191,

Eclipse Neon (4.6.3), and EMF version 2.12.0 were used

to compile and execute the Java code for the scalability

test suite. As there were no substantial differences be-

tween the mean and median, each test was repeated just

three times and the median of the measured time was

computed. For all test runs, we used a threshold of 600s

(10 minutes); if a solution took longer, we registered a

time-out and terminated the test. The EVL+Strace so-

lution could not be fully automated so we had to omit

it and restrict our performance evaluation to the six

remaining solutions.

To obtain models of increasing size, we generated

synthetic models consisting of an increasing number of

families with 2 parents and 3 children (and correspond-

ing female and male persons).

7.3.2 Results and observations

Our four measurement results are depicted in Fig. 26,

27, 28, and 29. Each figure consists of two plots: a plot

with a linear/linear scale to the left, and a plot with a

log/log scale to the right. The linear plot is meant to

provide a realistic impression for the actual complexity

curve of each solution (i.e., linear, polynomial, exponen-

tial). The logarithmic plots help zoom into finer details

for smaller models (practically invisible in the linear

plot), and zoom out for larger models so even large dif-

ferences in runtime can still be presented qualitatively.

To prevent distorting the plots, we omit solutions

with poor scalability (JTL for batch and JTL+BiGUL

for incremental transformations) from the linear plots

(indicated for each case in the legend) as the logarith-

mic plots can better capture the complete picture. In all

plots, the x-axis denotes the number of elements (nodes

and edges) in the respective models in steps of 2k for

small models (< 5k) and then steps of 20k up to 106.

Figure 26 depicts the obtained results for the for-

ward batch transformation. In comparison to the other

solutions, the JTL solution does not scale, already re-

quiring over 300s for models with 5k elements (all other

tools only require milliseconds). We were unable to ob-

tain results for the JTL solution for models larger than

5k. This is due to the fact that JTL uses a generic con-

straint solver to derive the required consistency restora-

tion behavior.

All other solutions scale reasonably well (linear with

model size) up to about 500k, with the BXtend solution

being the fastest. As from this point, the JVM-based so-

lutions start breaking down: SDMLib already at 500k

with a substantial and sudden increase in runtime, BX-

tend with a garbage collector exception at about 650k,

and eMoflon with a sharp increase in runtime at about

850k. Only the BiGUL (Haskell) and NMF (C#) solu-

tions scale linearly up to the maximum size.

Figure 27 depicts the obtained results for the for-

ward incremental transformation. The NMF solution

is the fastest here (below our measurement precision),
and appears to be completely decoupled from model

size. This is due to the fact that NMF relies on o-deltas,

which are propagated from the master to the dependent

model without any need for global analysis.

All other tools scale reasonably well with a moderate

increase in runtime, until BXtend breaks down again at

650k for the same reason as for the batch transforma-

tion. The eMoflon solution is the only EMF-based so-

lution that makes it until the maximum size, but starts

showing problems as from 900k due to memory man-

agement problems.

The logarithmic plot contains all solutions and shows

clearly that both BiGUL and JTL do not attain any

speed up in the incremental case, taking just as long as

for the batch transformation. Since BiGUL exploits nei-

ther correspondences nor deltas, a global re-alignment

is required even after small incremental changes. JTL

is based on a constraint solver which does not operate

incrementally.



36 Anthony Anjorin et al.

# model elements

tim
e 

in
 s

0

20

40

60

80

200000
400000

600000
800000

1000000

eMoflon NMF SDMLib BXtend BiGUL

Batch Forward (without JTL): lin - lin scale

# model elements

tim
e 

in
 s

0.01

0.1

1

10

100

5000
10000

50000
100000

500000
100000

eMoflon NMF SDMLib BXtend BiGUL JTL

Batch Forward (all tools): log - log scale

Fig. 26 Forward batch transformation: Linear/linear scale (left) and log/log scale (right)

# model elements

tim
e 

in
 s

0

1

2

3

4

200000
400000

600000
800000

1000000

eMoflon NMF SDMLib BXtend

Incremental Forward (without JTL and BiGUL) : lin - lin scale

# model elements

tim
e 

in
 s

0.001

0.01

0.1

1

10

100

5000
10000

50000
100000

500000

1000000

eMoflon NMF SDMLib BXtend BiGUL JTL

Incremental Forward (all tools) : log - log scale

Fig. 27 Forward incremental transformation: Linear/linear scale (left) and log/log (right)

# model elements

tim
e 

in
 s

0

200

400

600

800

200000
400000

600000
800000

1000000

eMoflon NMF SDMLib BXtend BiGUL

Batch Backward (without JTL) : lin - lin scale

# model elements

tim
e 

in
 s

0.01

0.1

1

10

100

5000
10000

50000
100000

500000

1000000

eMoflon NMF SDMLib BXtend BiGUL JTL

Batch Backward (all tools) : log - log scale

Fig. 28 Backward batch transformation: Linear/linear scale (left) and log/log scale (right)

# model elements

tim
e 

in
 s

0

0.5

1

1.5

2

2.5

200000
400000

600000
800000

1000000

eMoflon NMF SDMLib BXtend

Incremental Backward (without JTL) : lin - lin scale

# model elements

tim
e 

in
 s

0.001

0.01

0.1

1

10

100

5000
10000

50000
100000

500000

1000000

eMoflon NMF SDMLib BXtend BiGUL JTL

Incremental Backward (all tools) : log - log scale

Fig. 29 Backward incremental transformation: Linear/linear scale (left) and log/log scale (right)



Benchmarking Bidirectional Transformations 37

The results for the backward batch and incremen-

tal transformations are depicted in Fig. 28 and 29, re-

spectively. Recall that the backward transformation re-

quires a configurable update policy. This seems to pose

a greater challenge (from a runtime scalability perspec-

tive) than the forward transformation for all solutions.

Only the BXtend, NMF, and SDMLib solutions scale

with BXtend breaking down again at about 650k, and

NMF timing out at about 960k. In this case, the SDM-

Lib solution scales best. The solutions in JTL (up to

5k), BiGUL (up to 67k), and eMoflon (up to 155k) don’t

scale. While this might not be surprising for the solver-

based JTL solution, the problem with the eMoflon and

BiGUL solutions is probably related to how the config-

uration is handled. eMoflon, for example, always com-

putes all possible matches and provides these to the

update policy so it can make a choice supported by in-

specting all alternatives. While this strategy and corre-

sponding API can be advantageous for some use cases,

it explodes for a large number of possibilities. A better

strategy (at least for our limited scalability test) would

be to compute alternatives on demand and consult the

update policy after computing the next alternative.

The measurements for the backward incremental

transformations reveal nothing new and are fairly anal-

ogous to the results in the forward direction.

7.4 Threats to validity

In the following, the main threats to validity of the

study and corresponding mitigations are discussed. In

particular, the threats suggested by Wohlin et al. [55]

are considered and applied to the quantitative compar-

ison of the different solutions.

7.4.1 Internal Validity

Internal validity refers to the level of influence that ex-

traneous variables may have on the design of the study.

As the Benchmarx framework is EMF-based, while not

all the used bx tools are EMF-based, it is possible that

this affects the evaluation. This threat has been miti-

gated both before and during the analysis of solutions

by experimenting with all solutions and measuring the

overhead posed by a required conversion to and from

EMF data structures: The NMF solution requires a very

costly conversion (EMF to C#) [28] so we were forced

to omit this overhead for the measurements. The result,

however, is now slightly biased in favor of the NMF so-

lution as the measurements now exclude all overhead

posed by the framework. The BiGUL solution requires

a similar conversion (EMF to Haskell) but experiments

show that this overhead was in contrast negligible and

could be ignored. The SDMLib (JVM-based) solution

uses a rewrite of edits to solve the compatibility prob-

lem. All other tools are EMF conform and work directly

with the actual models. By and large, we succeeded in

taking the heterogeneity of tool implementations into

account. We have, however, interpreted performance

results with care, focusing on fundamental differences

concerning scalability.

Another threat concerns the quality of the solutions

and the expertise of the different solution developers.

This is an important point as bx tools and languages

tend to be rather exotic and not very mature from a

tooling perspective. To mitigate this threat and to make

sure that we are comparing fundamental differences and

not tool maturity, we ensured that all solutions were

implemented by the tool developers themselves. This

implies that the solutions are close to as best as they

could be for each bx tool and approach.

7.4.2 Conclusion Validity

A threat to conclusion validity is constituted by the so-

lution data extraction and analysis processes adopted

to gather the results. Our strategy was discussed in ad-

vance with all co-authors, applied for a workshop pa-

per [4], and refined for the TTC2017 [2].

In a quantitative study, the reliability of the mea-

sures refers to the reproducibility of the results. To en-

sure that all results are reproducible, we repeated each

measurement three times and made sure that there were

no substantial differences between the measured val-

ues. As the Benchmarx framework is supplied to solu-

tion developers via a GitHub repository, however, they

had to install and execute the framework on their local

machine to check conformance. The conformance re-

sults reported by the solution provider of EVL+Strace

differed from the results obtained by the benchmark

providers; this is mentioned in the respective sections,

with a detailed reported on possible reasons in the ad-

ditional material provided online (see Sect. 10). In all

other cases, the results were the same, even on different

platforms.

7.4.3 Construct Validity

Construct validity concerns the validity of our results

with respect to the measured metrics.

Concerning the size of solutions: we are well aware

of the fact that lines of code is an old but notoriously

contentious metric (see e.g., Rosenberg [45] for a dis-

cussion of typical misconceptions). For measuring the

size of the solutions, a simple tool was used to count the

numbers of lines of code, words, and characters. These



38 Anthony Anjorin et al.

numbers must be taken with a grain of salt. In par-

ticular, they refer to transformation definitions written

in considerably different languages. Furthermore, they

are sensitive to layout conventions and programming

practices. For these reasons, the values from the size

metrics were interpreted cautiously and primarily used

to identify outliers (see Sect. 7.1). As there is too much

noise in the data, it is, however, impossible to assert

assumptions such as the following: “Solutions where

both transformation directions are specified explicitly

are two times larger than solutions in dedicated bx lan-

guages.”

Concerning measuring conformance: developing a

test suite for the Families-to-Persons benchmark proved

challenging. As explained in Sect. 3.2.3, synchronization

behavior cannot be derived uniquely from the consis-

tency relation between the respective models. As a mit-

igation, all test cases were discussed and reviewed to-

gether with three co-authors (all bx researchers and dif-

ferent solution/tool developers) to decide what is to be

“reasonable” synchronization behavior. All test cases

were again discussed and reviewed as part of the TTC2017

(using GitHub as a discussion platform) with feedback,

questions, and criticism from solution experts. We are

confident that our test suite asserts reasonable behav-

ior. As explained in Sect. 7.2, our test suite provides

for feature coverage with respect to the feature model

for classifying test cases (Fig. 17). In addition, the test

suite provides for model coverage with respect to the

types of model elements defined in the metamodels for

families and persons. However, it should be noted that

the test suite is used for benchmarking, not for detect-

ing each and every error in the benchmark solutions.

Consequently, the number of test cases, which have to

be implemented manually by benchmark providers and

understood by and discussed with solution providers,

was confined to a bare minimum.

Concerning performance: runtime results have been

interpreted with care, focusing on fundamental differ-

ences concerning scalability as the solutions differ sub-

stantially regarding their execution platforms (Haskell,

C#, JVM-based, EMF-based).

7.4.4 External Validity

External validity refers to the generalizability of ob-

tained results beyond the scope of the evaluation of the

benchmark solutions.

The Benchmarx framework has been designed for

comparing heterogeneous bx tools. The work presented

in this paper demonstrates that this design goal has

been achieved: Benchmarks may be executed by bx

tools with considerably different architectures.

The framework is, however, biased towards a specific

type of synchronization: directed synchronization by

propagating changes from master to dependent models.

Bx tools that are tailored towards this type of synchro-

nization (e.g., NMF) are favored over bx tools which

have been designed for different kinds of bx scenarios

(e.g., BiGUL). We have been careful to take this fact

into account when interpreting results and drawing pos-

sible conclusions. A generalization of the Benchmarx

framework to other bx scenarios (e.g., concurrent syn-

chronization) is left to future work.

The Families-to-Persons-benchmark might be con-

sidered as a toy example. However, it has been selected

judiciously such that it can be implemented with ac-

ceptable effort. Simultaneously, this benchmark includes

several challenges, which were summarized in Sect. 3.3.

These challenges resulted in a significant failure rate:

About 16% of all test cases failed, even though the so-

lution authors made a serious attempt to provide best-

effort solutions. Furthermore, we tried to choose an ex-

ample that is amenable to a very wide range of tools.

A consequence of this is that the data structures are

simple lists (of lists). Benchmarks dealing with more

complex structures such as graphs may yield different

evaluation results.

Clearly, a spectrum of benchmarks would provide

more data from which general conclusions may be drawn

(even though the single case presented in this paper al-

ready provides some useful insights, which we expect to

transfer to other transformation cases). Initial work in

this direction has already been performed (see the end

of Sect. 9.1).

So far, the performance evaluation is specific inas-

much as synthetic models are generated with a fixed

strategy (many families with a fixed number of chil-

dren) and the performance tests check incremental be-

havior only with respect to single edits. Further varia-

tion of the performance evaluation — with respect to

both the generated models and the considered edits

— is subject to future work. However, even the cur-

rent evaluation shows considerable differences among

the solutions implemented in heterogeneous bx tools

(Sect. 7.3).

Finally, the compared solutions were provided by

the tool developers themselves. While this positively

affects internal validity, it also means that results con-

cerning conformance and performance cannot be gen-

eralised to average developers; our results most proba-

bly represent an upper bound, with no guarantee that

average developers can ever realise solutions of similar

quality.



Benchmarking Bidirectional Transformations 39

8 Assessment of the Benchmarx approach

In this section, we revisit the claims made in the intro-

duction with respect to the usefulness of the Benchmarx

approach. Each of the following subsections addresses

one of these claims in turn. While the previous sec-

tion focused on the evaluation of the solutions to the

Families-to-Persons case, the current section targets the

assessment of the Benchmarx approach itself.

8.1 Heterogeneity

The Benchmarx infrastructure has been designed for

performing benchmarks in a wide variety of bx tools.

This is achieved in particular by the concept of a syn-

chronization dialog, introduced in Sect. 5. For imple-

menting a specific benchmark case, a solution provider

has to realize a pre-defined procedural interface with

the bx tool at hand (Fig. 19). All the data maintained

by the tool remains hidden behind this interface. The

Benchmarx infrastructure thus abstracts from specific

tool architectures, and case providers do not need to

know in which ways bx tools store their data, nor how

and when changes are propagated. A bx tool used for

implementing a solution may have any tool architecture

defined by the taxonomy displayed on the left-hand side

of Fig. 16.

The solutions to the Families-to-Persons case demon-

strate that the goal of supporting heterogeneity has

been achieved. Table 2 shows that — apart from well-

behavedness guarantees such as termination and com-

pleteness — all features from the bx tool feature model

are covered by the bx tools used for implementing case

solutions. This demonstrates that the bx tool interface

may be implemented in considerably different ways. For

example, while the state-based tool BiGUL merely up-

dates model states on demand without maintaining any

auxiliary data structures, NMF Synchronizations pro-

vides for live synchronization, relying on o-deltas and

correspondences.

Heterogeneity is also supported with respect to tech-

nological spaces. While the Benchmarx infrastructure

is EMF-based, bx tools are not required to be EMF-

based. For example, BiGUL is based on the functional

language Haskell, and NMF Synchronizations was im-

plemented in C#, based on the .NET framework. In

both tools, wrappers needed to be written for convert-

ing data or function calls. Providing wrappers proved

to be a routine task which may be performed with ac-

ceptable effort.

8.2 Evaluation of solutions

In Sect. 7, we evaluated the solutions to the Families-

to-Persons benchmark with respect to three categories:

size of the transformation definition, conformance to

requirements, and performance. While we did collect

metrics for the purpose of evaluation, we also stressed

repeatedly that we do not view a bx benchmark as a

competition with the goal of identifying winners with

respect to the collected metrics (as it is done in other

domains).

We argue that the heterogeneity of bx tools should

imply a qualitative evaluation approach, taking into ac-

count that the tools were built for different purposes

with different technologies. In this way, we may provide

for a more cautious and useful interpretation of bench-

mark results. In the sequel, we discuss this approach for

the evaluation categories mentioned previously.

The size of the transformation definition was mea-

sured as an indicator of development effort. As has been

discussed earlier, the validity of this metric is threat-

ened for several reasons. Therefore, we used the size

measurements merely to detect outliers. Altogether, size

metrics played a minor role in our evaluation.

Conformance to requirements is usually measured

only in terms of passed test cases. In contrast, we dis-

tinguish between expected and unexpected passes and

failures. Whether a test result is classified as expected

or unexpected, depends on the comparison of features

required by the case and features provided by the bx

tool. This comparison in turn relies on the conceptual

framework introduced in Sect. 4. For example, a test

case may require that correspondences between source

and target models be maintained because they may not

be reconstructed from the model states, or it may re-

quire that operations be propagated in a specific order

(requiring o-deltas). The notion of normalized success

rate takes these factors into account (Table 6).

Similarly, the feature model for the classification of

bx tools (Fig. 16) assists in a balanced interpretation

of performance results. For example, the performance

tests for incremental transformations require to apply

small changes to models of increasing size (Sect. 7.3).

NMF Synchronizations, for instance, fits this use case

perfectly because it performs live synchronization.

8.3 Understanding bx approaches

Finally, our work contributes to understanding the re-

lationships between different bx approaches. To this

end, Sect. 6 presented the solutions for the Families-to-

Persons benchmark in a normalized format. All bx tools

used for the solutions were classified with respect to our



40 Anthony Anjorin et al.

taxonomy (Fig. 16). In addition, the solutions were de-

scribed briefly, allowing to contrast them against each

other. It is striking to see the wide spectrum of so-

lution approaches: BiGUL applies putback-based pro-

gramming in a functional language. In BXtend, forward

and backward transformations are programmed sepa-

rately in a procedural language. eMoflon defines con-

sistency declaratively with the help of a graph gram-

mar. In EVL+Strace, a correspondence model is de-

fined along with declarative constraints and procedural

repair actions. In JTL, consistency is defined by a set

of declarative constraints which have to hold between

source and target models. In NMF Synchronizations,

consistency relations are defined declaratively as bi-

jections; however, operations for updating models may

have to be defined procedurally. Finally, in SDMLib

forward and backward transformations are defined sep-

arately as graph transformations.

One of the lessons that might be learned from the

Families-to-Persons benchmark concerns the trade-off

between well-behavedness guarantees and expressive-

ness: Among the compared bx tools, correctness may

be guaranteed only in eMoflon and JTL, both of which

are based on a declarative, symmetric definition of the

consistency relation between source and target models.

However, in the Families-to-Persons benchmark the be-

havior of forward and backward transformations is not

derived solely from the definition of the consistency re-

lation, which would leave too many degrees of freedom.

Rather, the behavior is specified explicitly — and sepa-

rately for the forward and the backward direction. As a

consequence, both eMoflon and JTL fail in certain test

cases. In contrast, the BXtend solution is able to pass

all test cases, but does not provide any guarantees.

9 Related work

In this section, we provide a discussion of related work

divided into two broad groups: (i) existing results con-

cerned with providing benchmark frameworks and ex-

amples in an MDE context, and (ii) previous work on

classifying and comparing bx approaches. The restric-

tion of (i) and (ii) to MDE and bx, respectively, is to

keep the scope of our discussion manageable.

9.1 Benchmark frameworks and examples

To the best of our knowledge, Benchmarx is the first

and only framework for developing and executing bench-

marks for bidirectional transformations. The framework

is based on initial conceptual work regarding the re-

quirements bx benchmarks and bx benchmark frame-

works should satisfy [3]. An implementation of these

concepts was developed several years later and described

in a paper for the BX 2017 workshop [4]. This arti-

cle goes considerably beyond the preliminary work on

Benchmarx as it presents the selected benchmark case

and its challenges more accurately, includes a signif-

icantly extended section on the underlying conceptual

framework regarding bx tool architectures, and presents

and compares a broad spectrum of solutions to the

selected case, demonstrating the applicability of the

Benchmarx framework to heterogeneous bx tools.

The Transformation Tool Contest (TTC)15 series

has been organized to promote the comparison and

evaluation of model transformation tools. Over the years

the TTC has established conventions and guidelines for

case descriptions and a systematic comparison of sub-

mitted solutions. While there have been bx case sub-

missions to the TTC before – including our TTC case

for the Families-to-Persons benchmark [2] – the TTC

does not focus exclusively on bx and thus provides nei-

ther specialized infrastructure nor extra support for bx

as the Benchmarx framework does. The TTC is also a

contest typically with a ranking of solutions to iden-

tify winners and losers. Due to the heterogeneity of bx

approaches and tools, our goal in this paper is more

to understand fundamental differences and similarities

without claiming which solution is “best”.

The SHARE environment [25] (Sharing Hosted Au-

tonomous Research Environments) provides general sup-

port for sharing research tools via virtual machines.

SHARE has been used as a support environment in

the TTC series to make benchmark solutions accessible

without imposing any installation effort for inspecting

and executing solutions. Solutions based on the Bench-

marx framework may be distributed via SHARE or

other virtual environments. Benchmarx and SHARE

thus satisfy orthogonal needs.

There have been numerous proposals for benchmark-

ing MDE technology. Varró et al. [52] suggest a suite of

examples for graph transformation tools, chosen care-

fully to test various features related to graph pattern

matching and rule-based model transformation. While

there are bx approaches based on graph transformation,

this benchmark cannot be directly applied to bench-

marking bx solutions.

Bergmann et al. extend the graph transformation

benchmark of Varró et al. by examples specifically fo-

cused on incremental graph pattern matching [5]. Al-

though one of the examples in this extension is a bx

problem, the benchmark itself covers features specific

to incremental pattern matching and cannot be applied

to benchmarking the broad spectrum of bx solutions.

15http://www.transformation-tool-contest.eu



Benchmarking Bidirectional Transformations 41

With a special focus on evaluating and promoting

the scalability of MDE tools, there have been several

benchmark proposals from the BigMDE workshop se-

ries: Strüber et al. present a collection of examples and

a conceptual framework for evaluating solutions [51].

Strüber et al. argue to evaluate not only the scalability

of transformations (performance) but also the scalabil-

ity of specifications (maintainability). While the exam-

ples and features are not specific to bx, we have included

the “size” of specifications as a factor for our compari-

son of bx solutions in Sect. 7. Additional, better metrics

for measuring the complexity of bx specifications can

and should be explored in the future.

Also as part of the BigMDE workshop, Izs et al.

present MONDO-SAM [32] as a framework to system-

atically assess MDE scalability. MONDO-SAM takes

a very broad view on benchmarking MDE technology,

covering numerous MDE tasks. While MONDO-SAM

does not specifically cover bx benchmarking and its

unique challenges, the Benchmarx framework could be

aligned with MONDO-SAM in the future.

In recognition of the need to collect bx examples, the

Bx Example Repository [10] was set up and is continu-

ously being extended and maintained.16 The repository

includes a short description of the Families-to-Persons

case, which we selected as an initial example for demon-

strating the feasibility of the Benchmarx framework.

This case, of which several variants exist, was originally

proposed as part of the ATL [33] transformation zoo.17

For its implementation with the Benchmarx framework,

the case was refined into a bidirectional, incremental

transformation with a configurable backward transfor-

mation, for which we developed a comprehensive set

of test cases. The Benchmarx framework is meant to

complement the Bx Example Repository. With time,

the most promising examples in the repository can be

chosen and suitably extended to establish them with

the Benchmarx framework as bx benchmarks.

In order to enable a more comprehensive evaluation,

bx tools should be compared with the help of a spectrum

of benchmarks rather than with the help of just a sin-

gle case (currently Families-to-Persons). In fact, more

benchmarks are already available for evaluation with

the Benchmarx framework, but have been implemented

only in a few bx tools to date. Procuring further solu-

tions is currently ongoing work. For example, all cases

proposed by Westfechtel [53] have been implemented

as bx benchmarks in the Benchmarx framework. While

these cases were originally designed for evaluating the

16http://bx-community.wikidot.com/examples:home
17http://www.eclipse.org/atl/atlTransformations/

#Families2Persons

bx language QVT Relations (QVT-R [43]), they can be

meaningfully applied to other bx languages and tools.

9.2 Classification and comparison of bx approaches

There has been a considerable amount of research done

on classifying and comparing bx approaches. As an ex-

ample of work towards a formal categorization of bx,

our collection of bx tool architectures in Sect. 4 is in-

spired by the formal tile framework of Diskin; the in-

terested reader is referred to his seminal work [14] for

a more rigorous handling of synchronization operations

and their composition.

Besides proposed formal frameworks for bx, there

has also been work on comparing similar bx approaches:

Foster et al. discuss and compare different and comple-

mentary approaches to bidirectional programming [22].

With similar goals, there have also been papers compar-

ing numerous TGG tools [27,39]. In both cases, how-

ever, the comparison is restricted to relatively homoge-

neous variants of the same general bx approach. This

allows for a detailed comparison but is orthogonal to

our goal of comparing diverse bx approaches with the

Benchmarx framework.

There have also been some attempts to compare

rather different bx approaches, such as the compari-

son of JTL and some TGG tools provided by Eramo et

al. [18]. This paper can be seen as a consequent develop-

ment in the same direction of such ad-hoc comparisons,

but with the crucial difference that we now provide both

a conceptual and technical framework for establishing

such bx frameworks in the future.

The Bx Community18 has also been working to-

wards establishing standard terminology and a classifi-

cation schema for bx. Eramo et al. take first steps to-

wards a taxonomy for bx [19] by providing a collection

of basic definitions and requirements for bx approaches.

With similar goals, Hidaka et al. provide a com-

prehensive feature-based classification [26] of bx ap-

proaches. Compared to the feature model proposed by

Hidaka et al., our feature model focuses on a relatively

small set of “core features” and does not intend to pro-

vide a comprehensive classification of the bx landscape.

Our feature model is not just a subset of Hidaka’s fea-

ture model, but introduces different features and orga-

nizes them in a different way. Essentially, as far as the

bx tool architecture is concerned (see the left-hand side

of Fig. 16), our feature model precisely reflects the con-

ceptual framework introduced in Sect. 4 and constitutes

an original contribution; the remaining parts are cov-

18http://bx-community.wikidot.com

http://bx-community.wikidot.com/examples:home
http://www.eclipse.org/atl/atlTransformations/#Families2Persons
http://www.eclipse.org/atl/atlTransformations/#Families2Persons


42 Anthony Anjorin et al.

ered by Hidaka’s feature model but in much less detail

due to the large number of features covered.

Other results towards classifying bx tasks and sce-

narios include work by Diskin et al. [15] on a taxonomy

for bidirectional model synchronization, and Lämmel’s

megamodelling approach to characterizing different bx

scenarios [37]. These results are complementary to our

Benchmarx framework as their goal is to provide a tool-

independent classification of bx problems, while we fo-

cus in this paper on classifying diverse bx solution strate-

gies, tools, and approaches.

10 Conclusion and future work

We presented Benchmarx, an infrastructure for evalu-

ating heterogeneous bx tools. Benchmarx is based on a

conceptual framework for bx tool architectures, which

are composed from basic operations for horizontal and

vertical alignment, consistency restoration, and update

propagation. The variability of bx tools is expressed

with a feature model covering tool architectures, well-

behavedness guarantees, the definition of consistency

relations, and supported types of synchronization.

Benchmarks are executed with the help of test suites

for evaluating both conformance to requirements and

performance. Test cases are written as synchronization

dialogs that start by establishing a consistent initial

state and then proceed by propagating changes from the

master model to the dependent model. The concept of a

synchronization dialog does not make any assumptions

regarding the bx tool architecture, allowing benchmarks

to be implemented in heterogeneous bx tools.

For evaluating conformance, test cases are classified

according to a taxonomy defined by a feature model.

The taxonomy includes features for classifying tool ar-

chitectures. In particular, the taxonomy covers appli-

cation scenarios that define the inputs expected and

exploited by bx tools. By comparing the required fea-

tures of test cases against the provided features of bx

tools, test results may be classified into expected and

unexpected passes and failures. The heterogeneity of bx

tools is thus taken into account when evaluating results.

The application of the Benchmarx infrastructure was

demonstrated with the well-known Families-to-Persons

benchmark, which is small yet challenging. The bench-

mark was implemented successfully in seven bx tools

which differ considerably with respect to their tech-

nological spaces, tool architectures, and bx languages.

A comprehensive evaluation with respect to the size

of transformation definitions, conformance to require-

ments, and performance demonstrates that test results

reveal significant differences among the respective solu-

tions and underlying tools, and can be interpreted in a

meaningful and balanced way - without any attempt to

identify the “best” solution.

Altogether, the work presented in this paper un-

derpins the claims made in the introduction: (1) The

Benchmarx infrastructure is designed for heterogeneous

tools. (2) Test results may be interpreted in a meaning-

ful way, taking heterogeneity into account. (3) Compar-

ison of solutions assists in understanding fundamental

differences between different bx approaches.

This paper takes a decisive step towards achieving

maturity of bx tools and enabling long-term industrial

applications. In an industrial setting, the Benchmarx

framework can be used not only to systematically com-

pare and choose candidate bx tools, but also to simplify

establishing a suitable architecture, and ensuring that

the chosen bx tool can be replaced if it becomes ob-

solete, or if better alternatives become available. This

reduces the dependency on a particular bx tool and thus

lowers the risk of applying cutting-edge bx technology.

As future work, we plan to apply the Benchmarx

infrastructure to other benchmark cases; initial work

in this direction has already been performed by imple-

menting the cases proposed by Westfechtel [53]. Only

then will it be possible to draw more general conclusions

concerning bx tools and languages. In addition, we will

also consider generalizations of the Benchmarx infras-

tructure to other types of bx scenarios, e.g., concurrent

synchronization.

Additional resources

Benchmarx on GitHub: The EMF-based implementa-

tion of the Benchmarx framework, all current bench-

mark examples, and all solutions to these bench-

marks, is maintained as an open-source project on

GitHub:

https://github.com/eMoflon/benchmarx

Conformance and Performance Data: All data used for

our conformance and performance evaluation is avail-

able together with extra comments from the solution

developers as a read-only Google sheet:

http://bit.ly/2RXABuw

A Glossary

Architecture (of a bx tool) External interface, defined by
required inputs and provided outputs, and internal pro-
cessing, defined by processing steps and their organiza-
tion.

Automatic synchronization Synchronization that is not
interactive.

Backward synchronization Directed synchronization in the
direction of the source model.

Batch synchronization Directed synchronization that cre-
ates a new dependent model.

https://github.com/eMoflon/benchmarx
http://bit.ly/2RXABuw


Benchmarking Bidirectional Transformations 43

Benchmark A standardized test that serves as a basis for
comparison or evaluation.

Bidirectional transformation (bx) A transformation that
synchronizes a source model with a target model.

bx language A domain-specific language for defining bidi-
rectional transformations.

bx law A condition that is satisfied by bidirectional trans-
formations.

bx tool A tool for executing bidirectional transformations.
Change Any modification to the contents of a model.
Completeness The ability of a bidirectional transformation

to process all models in the domain or range of the con-
sistency relation.

Concurrent synchronization Synchronization in which
both source and target models may be changed.

Conformance Satisfaction of requirements.
Consistency A condition on pairs of source and target mod-

els that ensures that both models agree on shared infor-
mation.

Consistency relation A binary relation that includes all
pairs of source and target models that are mutually con-
sistent.

Correctness A bx law that demands consistency between
the source model and the target model.

Delta Difference between two versions of the same model.
Dependent model The model that is created or changed

in a directed synchronization.
Directed synchronization Synchronization from a mas-

ter model to a dependent model.
Forward synchronization Directed synchronization in the

direction of the target model.
Hippocraticness A bx law that excludes changes on source

and target models that are already consistent before the
execution of a bidirectional transformation.

Incremental synchronization Synchronization that mod-
ifies an already existing model.

Interactive synchronization Synchronization that is par-
tially controlled by user interactions being performed dur-
ing the synchronization.

Least change synchronization Synchronization that per-
forms a minimal change with respect to a suitable metric
to reestablish consistency.

Least surprise synchronization Synchronization which
minimizes the surprise of the user of a bx tool and thus
maximizes conformance to the user’s expectations.

Live synchronization Synchronization that is performed
immediately after each elementary change.

Master model The model that is read but not changed in
a directed synchronization.

Metamodel Model that defines the structure of a set of
models.

Model Abstraction of a system under study.
Operational delta A delta which is defined by a sequence

of change operations from an old to a new version of a
model.

Round-trip law A bx law that refers to a round trip of
directed synchronizations being performed in sequence.

Source model A model that may act as first component of
a pair in the consistency relation maintained by a bidi-
rectional transformation.

Structural delta A delta which is defined in terms of struc-
tural elements being contained in both or only one of two
model versions.

Symmetric synchronization Synchronization between two
models, where neither model is a view of its opposite.

Synchronization Execution of a bidirectional transforma-
tion with the intent to establish or restore consistency
between a source model and a target model.

Synchronization on-demand Synchronization that is per-
formed only on explicit or implicit user request.

System Generic concept for designating a software applica-
tion, software platform, or any other software artifact.

Target model A model that may act as second component
of a pair in the consistency relation maintained by a bidi-
rectional transformation.

Transformation A procedure that reads, creates, or changes
a set of models.

Transformation definition The program that controls the
transformation.

Termination An execution of a transformation which halts
after a finite number of steps.

Version A state of an evolving model at a specific point in
time, defined in terms of the model’s contents at that
time.

View An abstraction of a model that may be computed au-
tomatically from the model’s content.

View-based synchronization Synchronization between a
model and a view on this model.

References

1. Anthony Anjorin. An Introduction to Triple Graph
Grammars as an Implementation of the Delta-Lens
Framework. In Jeremy Gibbons and Perdita Stevens, edi-
tors, Bidirectional Transformations - International Sum-
mer School, Oxford, UK, July 25-29, 2016, Tutorial Lec-
tures, volume 9715 of Lecture Notes in Computer Sci-
ence, pages 29–72. Springer, 2016.

2. Anthony Anjorin, Thomas Buchmann, and Bernhard
Westfechtel. The Families to Persons case. In Garcia-
Dominguez et al. [23], pages 27–34.

3. Anthony Anjorin, Alcino Cunha, Holger Giese, Frank
Hermann, Arend Rensink, and Andy Schürr. Benchmarx.
In Candan et al. [8], pages 82–86.

4. Anthony Anjorin, Zinovy Diskin, Frédéric Jouault,
Hsiang-Shang Ko, Erhan Leblebici, and Bernhard West-
fechtel. Benchmarx reloaded: A practical benchmark
framework for bidirectional transformations. In Romina
Eramo and Michael Johnson, editors, Proceedings of the
6th International Workshop on Bidirectional Transfor-
mations co-located with The European Joint Confer-
ences on Theory and Practice of Software, BX@ETAPS
2017, Uppsala, Sweden, April 29, 2017., volume 1827
of CEUR Workshop Proceedings, pages 15–30. CEUR-
WS.org, 2017.

5. Gábor Bergmann, Ákos Horváth, István Ráth, and
Daniel Varró. A benchmark evaluation of incremental
pattern matching in graph transformation. In Hartmut
Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele
Taentzer, editors, Graph Transformations, 4th Interna-
tional Conference, ICGT 2008, Leicester, United King-
dom, September 7-13, 2008. Proceedings, volume 5214
of Lecture Notes in Computer Science, pages 396–410.
Springer, 2008.

6. Thomas Buchmann. BXtend — a framework for (bidi-
rectional) model transformations. In Slimane Hamoudi,
Luis Ferreira Pires, and Bran Selic, editors, Proceedings
of the 6th International Conference on Model-Driven
Engineering and Software Development - Volume 1:
MODELSWARD (MODELSWARD 2018), pages 336–
345, Funchal, Madeira, January 2018. SciTePress.

7. Thomas Buchmann and Sandra Greiner. Handcrafting a
triple graph transformation system to realize round-trip



44 Anthony Anjorin et al.

engineering between UML class models and java source
code. In Leszek A. Maciaszek, Jorge S. Cardoso, André
Ludwig, Marten van Sinderen, and Enrique Cabello, edi-
tors, Proceedings of the 11th International Joint Confer-
ence on Software Technologies (ICSOFT 2016) - Volume
2: ICSOFT-PT, Lisbon, Portugal, July 24 - 26, 2016,
pages 27–38. SciTePress, 2016.

8. K. Selçuk Candan, Sihem Amer-Yahia, Nicole
Schweikardt, Vassilis Christophides, and Vincent
Leroy, editors. Proceedings of the Workshops of the
EDBT/ICDT 2014 Joint Conference (EDBT/ICDT
2014), Athens, Greece, March 28, 2014, volume 1133 of
CEUR Workshop Proceedings. CEUR-WS.org, 2014.

9. James Cheney, Jeremy Gibbons, James McKinna, and
Perdita Stevens. Towards a principle of least surprise
for bidirectional transformations. In Alcino Cunha and
Ekkart Kindler, editors, Proceedings of the 4th Interna-
tional Workshop on Bidirectional Transformations co-
located with Software Technologies: Applications and
Foundations, STAF 2015, L’Aquila, Italy, July 24, 2015,
volume 1396 of CEUR Workshop Proceedings, pages 66–
80. CEUR-WS.org, 2015.

10. James Cheney, James McKinna, Perdita Stevens, and
Jeremy Gibbons. Towards a repository of bx examples.
In Candan et al. [8], pages 87–91.

11. Antonio Cicchetti, Davide Di Ruscio, Romina Eramo,
and Alfonso Pierantonio. JTL: A bidirectional and
change propagating transformation language. In Brian
Malloy, Steffen Staab, and Mark van den Brand, ed-
itors, Proceedings of the Third International Confer-
ence on Software Language Engineering (SLE 2010), vol-
ume 6563 of Lecture Notes of Computer Science, pages
183–202, Eindhoven, The Netherlands, October 2010.
Springer-Verlag.

12. Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu,
Ralf Lämmel, Andy Schürr, and James F. Terwilliger.
Bidirectional transformations: A cross-discipline perspec-
tive. In Richard F. Paige, editor, Proceedings of the Sec-
ond International Conference on Theory and Practice
of Model Transformations (ICMT 2009), volume 5563
of Lecture Notes of Computer Science, pages 260–283,
Zurich, Switzerland, June 2009. Springer-Verlag.

13. Alberto Rodrigues da Silva. Model-Driven Engineering:
A Survey Supported by the Unified Conceptual Model.
Computer Languages, Systems & Structures, 43:139–155,
2015.

14. Zinovy Diskin. Model synchronization: Mappings, tiles,
and categories. In João M. Fernandes, Ralf Lämmel,
Joost Visser, and João Saraiva, editors, Generative and
Transformational Techniques in Software Engineering
III - International Summer School, GTTSE 2009, Braga,
Portugal, July 6-11, 2009. Revised Papers, volume 6491
of Lecture Notes in Computer Science, pages 92–165.
Springer, 2009.

15. Zinovy Diskin, Hamid Gholizadeh, Arif Wider, and
Krzysztof Czarnecki. A three-dimensional taxonomy for
bidirectional model synchronization. Journal of Systems
and Software, 111:298–322, 2016.

16. Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki.
From state- to delta-based bidirectional model transfor-
mations: the asymmetric case. Journal of Object Tech-
nology, 10:6: 1–25, 2011.

17. Karsten Ehrig, Esther Guerra, Juan De Lara, Laszlo
Lengyel, Tihamer Levendovszky, Ulrike Prange, Gabriele
Taentzer, Daniel Varró, and Szilvia Varro-Gyapay. Model
transformation by graph transformation: A comparative
study. In Proceedings of the International Workshop on

Model Transformations in Practice (MTiP 2005), Satel-
lite Event of MoDELS 2005, volume 3844 of Lecture
Notes of Computer Science, pages 71–80, Montego Bay,
Jamaica, 2005. Springer-Verlag.

18. Romina Eramo and Alessio Bucaioni. Understanding
bidirectional transformations with TGGs and JTL. ECE-
ASST, 57, 2013.

19. Romina Eramo, Romeo Marinelli, and Alfonso Pieranto-
nio. Towards a taxonomy for bidirectional transforma-
tion. In Davide Di Ruscio and Vadim Zaytsev, editors,
Post-proceedings of the Seventh Seminar on Advanced
Techniques and Tools for Software Evolution, SATToSE
2014, L’Aquila, Italy, 9-11 July 2014, volume 1354 of
CEUR Workshop Proceedings, pages 122–131. CEUR-
WS.org, 2014.

20. Romina Eramo, Alfonso Pierantonio, and Michele Tucci.
Enhancing the JTL tool for bidirectional transforma-
tions. In Conference Companion of the 2nd Interna-
tional Conference on Art, Science, and Engineering of
Programming, Nice, France, April 09-12, 2018, pages 36–
41, 2018.

21. J. Nathan Foster, Michael B. Greenwald, Jonathan T.
Moore, Benjamin C. Pierce, and Alan Schmitt. Com-
binators for bidirectional tree transformations: A lin-
guistic approach to the view-update problem. ACM
Transactions on Programming Languages and Systems,
29(3):17:1–17:65, May 2007.

22. Nate Foster, Kazutaka Matsuda, and Janis Voigtländer.
Three complementary approaches to bidirectional pro-
gramming. In Jeremy Gibbons, editor, Generic and In-
dexed Programming - International Spring School, SS-
GIP 2010, Oxford, UK, March 22-26, 2010, Revised Lec-
tures, volume 7470 of Lecture Notes in Computer Sci-
ence, pages 1–46. Springer, 2010.

23. Antonio Garcia-Dominguez, Georg Hinkel, and Filip
Krikava, editors. Proceedings of the 10th Transforma-
tion Tool Contest (TTC 2017), volume 2026 of CEUR
Workshop Proceedings, Marburg, Germany, July 2017.

24. Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert A.
Kowalski and Kenneth A. Bowen, editors, Logic Pro-
gramming, Proceedings of the Fifth International Con-
ference and Symposium, Seattle, Washington, USA, Au-
gust 15-19, 1988 (2 Volumes), pages 1070–1080. MIT
Press, 1988.

25. Pieter Van Gorp and Steffen Mazanek. SHARE: a web
portal for creating and sharing executable research pa-
pers. In Mitsuhisa Sato, Satoshi Matsuoka, Peter M. A.
Sloot, G. Dick van Albada, and Jack J. Dongarra, editors,
Proceedings of the International Conference on Com-
putational Science, ICCS 2011, Nanyang Technological
University, Singapore, 1-3 June, 2011, volume 4 of Pro-
cedia Computer Science, pages 589–597. Elsevier, 2011.

26. Soichoro Hidaka, Massimo Tisi, Jordi Cabot, and Zhen-
jiang Hu. Feature-based classification of bidirectional
transformation approaches. Software and Systems Mod-
eling, 15(3):907–928, July 2016.

27. Stephan Hildebrandt, Leen Lambers, Holger Giese, Jan
Rieke, Joel Greenyer, Wilhelm Schäfer, Marius Lauder,
Anthony Anjorin, and Andy Schürr. A survey of triple
graph grammar tools. ECEASST, 57, 2013.

28. Georg Hinkel. An NMF solution to the Families to Per-
sons case at the TTC 2017. In Garcia-Dominguez et al.
[23], pages 35–39.

29. Georg Hinkel and Erik Burger. Change propagation and
bidirectionality in internal transformation DSLs. Soft-



Benchmarking Bidirectional Transformations 45

ware and Systems Modeling, 18(1):249–278, February
2019.

30. Georg Hinkel, Thomas Goldschmidt, Erik Burger, and
Ralf H. Reussner. Using internal domain-specific lan-
guages to inherit tool support and modularity for
model transformations. Software and System Modeling,
18(1):129–155, 2019.

31. Georg Hinkel, Robert Heinrich, and Ralf Reussner. An
extensible approach to implicit incremental model anal-
yses. Software & Systems Modeling, Jan 2019.

32. Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel
Varró. MONDO-SAM: A framework to systemati-
cally assess MDE scalability. In Dimitris S. Kolovos,
Davide Di Ruscio, Nicholas Drivalos Matragkas, Juan
de Lara, István Ráth, and Massimo Tisi, editors, Pro-
ceedings of the 2nd Workshop on Scalability in Model
Driven Engineering co-located with the Software Tech-
nologies: Applications and Foundations Conference, Big-
MDE@STAF2014, York, UK, July 24, 2014., volume
1206 of CEUR Workshop Proceedings, pages 40–43.
CEUR-WS.org, 2014.

33. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan
Kurtev. ATL: A model transformation tool. Science of
Computer Programming, 72(1–2):31–39, 2008.

34. Hsiang-Shang Ko and Zhenjiang Hu. An axiomatic basis
for bidirectional programming. Proceedings of the ACM
on Programming Languages, 2(POPL):41:1–41:29, 2018.

35. Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. BiGUL: a
formally verified core language for putback-based bidirec-
tional programming. In Martin Erwig and Tiark Rompf,
editors, Proceedings of the 2016 ACM SIGPLAN Work-
shop on Partial Evaluation and Program Manipulation,
PEPM 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, pages 61–72. ACM, 2016.

36. Dimitris Kolovos, Louis Rose, Richard Paige, and An-
tonio Garcia-Dominguez. The epsilon Book, 2018.
http://www.eclipse.org/epsilon.

37. Ralf Lämmel. Coupled software transformations revis-
ited. In Tijs van der Storm, Emilie Balland, and Dániel
Varró, editors, Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engi-
neering, Amsterdam, The Netherlands, October 31 -
November 1, 2016, pages 239–252. ACM, 2016.

38. Erhan Leblebici, Anthony Anjorin, and Andy Schürr. De-
veloping eMoflon with eMoflon. In Davide Di Ruscio
and Daniel Varró, editors, Theory and Practice of Model
Transformations - 7th International Conference, ICMT
2014, Held as Part of STAF 2014, York, UK, July 21-
22, 2014. Proceedings, volume 8568 of Lecture Notes in
Computer Science, pages 138–145. Springer, 2014.

39. Erhan Leblebici, Anthony Anjorin, Andy Schürr,
Stephan Hildebrandt, Jan Rieke, and Joel Greenyer. A
comparison of incremental triple graph grammar tools.
ECEASST, 67, 2014.

40. Nuno Macedo and Alcino Cunha. Least-change bidirec-
tional model transformation with QVT-R and ATL. Soft-
ware and Systems Modeling, 15(3):783–810, July 2016.

41. Ulrich Norbisrath, Ruben Jubeh, and Albert Zündorf.
Story Driven Modeling. CreateSpace Independent Pub-
lishing Platform, 2013.

42. Ulf Norell. Dependently typed programming in Agda.
In Pieter W. M. Koopman, Rinus Plasmeijer, and
S. Doaitse Swierstra, editors, Advanced Functional Pro-
gramming, 6th International School, AFP 2008, Heijen,
The Netherlands, May 2008, Revised Lectures, volume
5832 of Lecture Notes in Computer Science, pages 230–
266. Springer, 2008.

43. Object Management Group. Meta Object Facility (MOF)
2.0 Query/View/Transformation Specification Version
1.3. Needham, MA, formal/2016-06-03 edition, Febru-
ary 2016.

44. Object Management Group. OMG Meta Object Facility
(MOF) Core Specification Version 2.5.1. Needham, MA,
formal/2016-11-01 edition, November 2016.

45. Jarrett Rosenberg. Some misconceptions about lines of
code. In 4th IEEE International Software Metrics Sym-
posium (METRICS 1997), November 5-7, 1997, Albu-
querque, NM, USA, page 137. IEEE Computer Society,
1997.

46. Leila Samimi-Dehkordi, Bahman Zamani, and Shekoufeh
Kolahdouz-Rahimi. EVL+Strace: A novel bidirectional
transformation approach. Information and Software
Technology, 100:47–72, August 2018.

47. Leila Samimi-Dehkordi, Bahman Zamani, and Shek-
oufeh Kolahdouz Rahimi. Solving the Families to Persons
case using EVL+Strace. In Garcia-Dominguez et al. [23],
pages 54–62.

48. Andy Schürr. Specification of graph translators with
triple graph grammars. In Ernst W. Mayr, Gun-
ther Schmidt, and Gottfried Tinhofer, editors, Graph-
Theoretic Concepts in Computer Science, 20th Interna-
tional Workshop, WG ’94, Herrsching, Germany, June
16-18, 1994, Proceedings, volume 903 of Lecture Notes in
Computer Science, pages 151–163. Springer, 1994.

49. Dave Steinberg, Frank Budinsky, Marcelo Paternostro,
and Ed Merks. EMF Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, Upper Saddle River, NJ,
2nd edition, 2009.

50. Perdita Stevens. Bidirectional model transformations in
QVT: Semantic issues and open questions. Software and
Systems Modeling, 9(1):7–20, 2010.

51. Daniel Strüber, Timo Kehrer, Thorsten Arendt, Christo-
pher Pietsch, and Dennis Reuling. Scalability of model
transformations: Position paper and benchmark set. In
Dimitris S. Kolovos, Davide Di Ruscio, Nicholas Drivalos
Matragkas, Jesús Sánchez Cuadrado, István Ráth, and
Massimo Tisi, editors, Proceedings of the 4th Workshop
on Scalable Model Driven Engineering, Vienna, Austria,
July 8, 2016, volume 1652 of CEUR Workshop Proceed-
ings, pages 21–30. CEUR-WS.org, 2016.

52. Gergely Varró, Andy Schürr, and Dániel Varró. Bench-
marking for graph transformation. In 2005 IEEE Sym-
posium on Visual Languages and Human-Centric Com-
puting (VL/HCC 2005), 21-24 September 2005, Dallas,
TX, USA, pages 79–88. IEEE Computer Society, 2005.

53. Bernhard Westfechtel. Case-based exploration of bidirec-
tional transformations in QVT Relations. Software and
Systems Modeling, 17(3):989–1029, July 2018.

54. Bernhard Westfechtel. Incremental bidirectional trans-
formations: Applying QVT Relations to the Families
to Persons benchmark. In Ernesto Damiani, George
Spanoudakis, and Leszek Maciaszek, editors, Proceed-
ings of the 13th International Conference on the Eval-
uation of Novel Approaches to Software Engineering
(ENASE 2018), pages 39–53, Funchal, Madeira, March
2018. SciTePress.

55. Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohls-
son, Bjrn Regnell, and Anders Wessln. Experimentation
in Software Engineering. Springer Publishing Company,
Incorporated, 2012.

56. Albert Zündorf and Alexander Weidt. The SDMLib solu-
tion to the TTC 2017 Families 2 Persons case. In Garcia-
Dominguez et al. [23], pages 41–45.



46 Anthony Anjorin et al.

Anthony Anjorin received his B.Sc.
and M.Sc. degrees in computational
engineering from the Technische
Universität Darmstadt (TUD), Ger-
many in 2007 and 2010, respec-
tively. He obtained his Ph.D. de-
gree in computer science also
from the TUD in 2014. He is
currently a junior professor for
model-based software development
at Paderborn University. His re-
search interests include triple graph
grammars, graph transformations,
bidirectional transformations, and
model-driven engineering.

Thomas Buchmann received his
diploma degree in mathematics
from the University of Bayreuth in
2001. For the following three years
he was employed as the manager
of the software engineering depart-
ment of a medium-sized local com-
pany. He obtained his doctoral as
well as his habilitation degree (all in
computer science) from the Univer-
sity of Bayreuth in 2010 and 2017,
respectively. His research inter-
ests include model transformations,
model-driven engineering, software
product line engineering, domain-
specific languages, and software ar-
chitecture.

Bernhard Westfechtel received his
diploma degree from University of
Erlangen-Nuremberg in 1983 and
his doctoral as well as his habili-
tation degree (all in computer sci-
ence) from RWTH Aachen Uni-
versity in 1991 and 1999, respec-
tively. Since 2004, he has been a
full professor of computer science
(in software engineering) at Univer-
sity of Bayreuth. His research inter-
ests include graph transformations,
model-driven engineering, software
product line engineering, software
configuration management, soft-
ware process modeling, software ar-
chitecture, and re-engineering.

Zinovy Diskin is senior research
fellow with McMaster University,
Canada. His research interests in-
clude building mathematical mod-
els for software engineering includ-
ing consistency management, assur-
ance, and cyber-physical systems.
He received Masters in mechani-
cal engineering from Bryansk State
Technical University, PhD in math-
ematics from Omsk State Univer-
sity and Dr. Math from the Univer-
sity of Latvia.

Hsiang-Shang ‘Josh’ Ko obtained
his DPhil degree from the Uni-
versity of Oxford in 2014, and
is now an Assistant Professor
by Special Appointment at the
National Institute of Informatics,
Japan. His research interests in-
clude dependently typed program-
ming, datatype-generic program-
ming, bidirectional programming,
Algebra of Programming/program
calculation, and functional pro-
gramming/type theory.

Romina Eramo obtained her Ph.D.
degree in Computer Science in 2011
at the Department of Information
Engineering, Computer Science and
Mathematics (DISIM), University
of L’Aquila. Currently, she is a
Researcher in software engineer-
ing at University of L’Aquila. Her
research interests include model-
driven engineering, quality aspects
in software engineering, domain-
specific languages, software archi-
tecture, cyber-physical systems and
embedded systems.



Benchmarking Bidirectional Transformations 47

Georg Hinkel received his B. Sc.
and M. Sc. degrees in computer sci-
ence from the Karlsruhe Institute
of Technology (KIT), in 2011 and
2014, respectively, and the B. Sc.
degree in math in 2012. In 2017,
he received his Ph.D. degree on
implicit incremental model analy-
ses and transformations from the
KIT. Currently, he is a software
technology engineer at Tecan Soft-
ware Competence Center GmbH.
His research interest covers model-
driven engineering, incrementality
and laboratory automation.

Leila Samimi-Dehkordi received her
B.Sc. in Software Engineering from
Iran University of Science and
Technology (IUST) in 2008 and an
M.Sc. in Algorithms and Compu-
tation from University of Tehran
(UT) in 2011. She obtained her
Ph.D. degree in Software engi-
neering from University of Isfahan
(UI) , Isfahan, Iran. Her Ph.D. re-
search focussed on Model-Driven
Development, Bidirectional Model
Transformations, Traceability, and
Change Propagations. She is a
member of the Model Driven Soft-
ware Engineering Research Group
(MDSE) at University of Isfahan.

Albert Zündorf received his diploma
degree from RWTH Aachen Uni-
versity in 1990 and his doctoral
degree from RWTH Aachen Uni-
versity in 1996. He did his Habil-
itation at Paderborn University in
2002. He has been a full professor
of software engineering at Kassel
University since 2002. His research
interests include graph transforma-
tions, model-driven engineering. He
is known for his work on Progres,
Fujaba, and SDMLib.


	Introduction
	Basic terminology
	The Families-to-Persons benchmark problem
	Foundations: Bx tool architectures
	The Benchmarx framework
	Description of benchmark solutions
	Evaluation of benchmark solutions
	Assessment of the Benchmarx approach
	Related work
	Conclusion and future work
	Glossary

