% «= Programming

Research
ﬁ' 7\ Laboratory

An axiomatic basis for
bidirectional programming

Josh H-S Ko' and Zhenjiang Hu'-3

1 National Institute of Informatics (NII), Japan
2 University of Tokyo, Japan
3 SOKENDAI (The Graduate University for Advanced Studies), Japan

International Workshop on Bidirectional Transformations (BX)
10 April 2018, Nice, France

‘-5 «> Programming

Research
ﬁ A Laboratory

wards a genera\"PW\DOSe

10
bidirectional language

Josh H-S Ko' and Zhenjiang Hu'-3

1 National Institute of Informatics (NII), Japan
2 University of Tokyo, Japan
3 SOKENDAI (The Graduate University for Advanced Studies), Japan

International Workshop on Bidirectional Transformations (BX)
10 April 2018, Nice, France

BIGUL

Bidirectional Generic Update Language

lens combinators

rearrV v -> (v, ())
replace * skip const ()

atomic lenses

replace.put s v = v

Hoare-style logic

{ sv | True } replace { s’ sv | s’ =v}

An Axiomatic Basis for Bidirectional Programming 41:7

[0} fail {0} {__} replace {s" _v|s =v} {sv|fs=v} skipf {s's_|s" =5}

{Ly I {L"} {R} r {R} T € R {R}
{L*R} Ilxr {L'+« R} (T}

{[RF'} RnNn{(_sv|Tsv)y C T
{T"}

b
b

{swpat | Rswpat} b {s" swpat| R s" s wpat}
{ svpat | R s vpat} rearrV vpat — wpatL b {s’ svpat | R s’ s vpat |}
{tpat v | Rtpat v} b {tpat’ tpat v | R’ tpat’ tpat v}
{ spat v | R spat v} rearrS spat — tpat s b { spat’ spat v | R’ spat’ spat v}

VY(normal M exit EL b) € bs.
{IRNM} b {Rn{(s"_v|Ms vAESs)

Reasoning

1__1}
rearrV v > (v, ())
{_ (5)}
1__1}
replace
{w v |w =v}
*{ 20}

{_ O | const () s=10()}
skip const ()

{h"h ()| h =h}

{ (w5, h") (L, h) (v, O) | w =vAh'=h}
{ (W, h") (L, h)y v |[w =vaAh =h}

Putback triples

precondition: a binary relation
on the original source and view

{sv|Rsv} b {s’"sv | R s"sv}

postcondition: a ternary relation on the
updated source, original source, and view

soundness '

vs,v. Rsv = 13s’. b.put s v =ys'

A R’ s’ s v

Get behaviour

If {sv]|]Rsv} b {s’" v|Cs"v}

then b.get n R € C

Proof b.get s = v soundness GetPut
R s v b.put s v = s’ s’ = s
Cs’ v Csyv

Range triples

input range: a binary relation
on the original source and view

{{svI|Rsvi}} b {{s" [P s"}}

output range: a unary relation/predicate
on the updated source

soundness*

vs’. P’ s’ = 3v. b.get s =V ARSYV

\ 4

vs’. P’ s’ = 3s,v. b.put sv=s’" ARsvV

Main theorem MK ||

If {sv|Rsv} b {s’" v|Cs"v?}
and {{ sv | Rsv}}b{{s’]| s’ }}

then b.get 1s defined on
and b.get| C C

Key-based list alignment

keyAlign ks kv b ¢ =

case
normal [] [] exit []
rearrV [] -> ()
skip const ()
normal (s::) (v::) | ks s == kv v exit (_::)
rearrS (s::ss) -> (s, ss)
rearrV (v::vs) -> (v, VsS)
b * keyAlign ks kv b c
adaptive (_::) []
_ _ > []
adaptive ss (v::) | kv v “elem” map ks ss
\ss (v::) -> extract ks kv v ss
adaptive (_::)
\ss (v::) -> cvVv :: ss

Verifying keyAlign

{ ss vs | True }
keyAlign ..
{ ss’ ss vs | 3ss*. ss* pretains elements in ss and
ss’ 1s an updated version of ss* and
element-wise consistent with vs }

{{ ss vs | True }} keyAlign .. {{ ss’ | True }}

Evolution of session types

program/process type/protocol
X := read ch
ch: ?int;

. lint;
write ch .. lint; end
write ch ..

ch: ?int;

l(int x int); end

Process-protocol synchroniser

e The get direction is type inference.
e For the put direction:

e Retain the original process behaviour (assuming that
the protocol is only being refactored or optimised)

e Reject an update if a new protocol deviates too much
from the original one

e Verification desirable

Towards a genera\
bidirectional language

General-purpose bidir. lang.

e Synchronisation problems are ubiquitous and diverse.
e Inventing a DSL for every problem?

e Reuse (and unification) of general BX concepts
e “BenchmarX reloaded” at BX'17
e Tony at SSBX'16: Implementing TGG in BiGUL?

e Tool support — IDE, verifier, debugger, etc

What does a general-
purpose bidirectional
language look like?

For state-based asymmetric lenses...

“Get-based” approach

First: write a consistency relation (get)

map f <alignment strategy>
o filter p <management of ignored elements>

Second: annotate the consistency relation
with restoration (put) behaviour

“Put-based” approach

allgn p match b create conceal =

case
normal [] [] eXit []

First: write a (put) program to restore
a consistency relation in mind

Second: the consistency relation (get)
becomes executable for free

Conclusion

e Declarative approaches (DSLs) and investigation into
various forms of well-behavedness laws/principles are
definitely useful.

o But general-purpose bidirectional languages should be
given some thoughts too.

e |n addition to well-behavedness guarantees...

e Max freedom to program and reason about the
consistency restoration behaviour

