
An axiomatic basis for
bidirectional programming

Josh H-S Ko1 and Zhenjiang Hu1–3
1 National Institute of Informatics (NII), Japan 

2 University of Tokyo, Japan 
3 SOKENDAI (The Graduate University for Advanced Studies), Japan

International Workshop on Bidirectional Transformations (BX) 
10 April 2018, Nice, France

An axiomatic basis for
bidirectional programming

Josh H-S Ko1 and Zhenjiang Hu1–3
1 National Institute of Informatics (NII), Japan 

2 University of Tokyo, Japan 
3 SOKENDAI (The Graduate University for Advanced Studies), Japan

International Workshop on Bidirectional Transformations (BX) 
10 April 2018, Nice, France

Towards a general-purpose

bidirectional language

BiGUL
Bidirectional Generic Update Language

replace skip	const	()*
rearrV	v	->	(v,	())

atomic lenses

lens combinators

replace.put s v = v

Hoare-style logic

replace{	s	v	|	True	} {	sʹ	s	v	|	sʹ	=	v	}

An Axiomatic Basis for Bidirectional Programming 41:7

{ ∅ } fail { ∅ } { } replace { s′ v | s′ = v } { s v | f s = v } skip f { s′ s | s′ = s }

{ L } l { L′ } { R } r { R′ }
{ L ∗ R } l ∗ r { L′ ∗ R′ }

T ⊆ R { R } b { R′ } R′ ∩ ⟨ s v | T s v ⟩ ⊆ T ′

{T } b {T ′ }

{ s wpat | R s wpat } b { s′ s wpat | R′ s′ s wpat }

{ s vpat | R s vpat } rearrV vpat → wpat

!

b { s′ s vpat | R′ s′ s vpat }

{ tpat v | R tpat v } b { tpat ′ tpat v | R′ tpat ′ tpat v }

{ spat v | R spat v } rearrS spat → tpat

!

b { spat ′ spat v | R′ spat ′ spat v }

∀(normal M exit E

!

b) ∈ bs.

{ R ∩ M̂ } b { R′ ∩ ⟨ s′ v | M̂ s′ v ∧ Ê s′ ⟩ }
∀(adaptive M

!

f) ∈ bs.

∀s , v. (R ∩ M̂) s v ⇒
(R ∩ N) (f s v) v where

∧ ∀s′. R′ s′ (f s v) v ⇒ R′ s′ s v N =
⋃

[M̂ | (normal M . . .) ∈ bs]
{ R ∩ D } case

!

bs { R′ } D =
⋃

[M | (normal/adaptive M . . .) ∈ bs]

Fig. 2. Putback proof rules. M̂ denotes the “actual main condition” of a branch: the main condition M of
the branch intersected with the negations of the main conditions of all the previous branches. “Actual exit

conditions” Ê are analogous.

4.1 Atomic Constructs

BiGUL has three atomic constructs, whose corresponding rules are in the first row of Figure 2.
The fail construct has type S ←↩ V for any types S and V . The precondition of the fail rule

is the empty relation ∅, saying that no input can make fail compute successfully. This directly
corresponds to the implementation: put fail s v = Nothing.
The replace construct has type S ←↩ S for any type S, and replaces the source with the view

regardless of what they are, i.e., put replace s v = Just v. Correspondingly, the precondition of the
replace rule is the always-true relation, and the postcondition states that the updated source s′ will
be equal to the view v.

The skip construct takes a function f : S → V in the host language as an argument and has type
S ←↩ V . It ignores the view and leaves the source as it is; correspondingly, the postcondition says
that the updated source s′ will be equal to the original source s. Unlike replace, we cannot skip
under all circumstances — before throwing the view away, we must ensure that it can be recovered
from the source, or otherwise there is no hope to establish PutGet. The precondition thus requires
that the view can be computed from the source by f . In the implementation, this precondition is
checked dynamically: put (skip f) s v = if f s == v then Just s else Nothing.

4.2 Product

Given two BiGUL programs l : S ←↩ V and r : T ←↩ W , we can form the product of the two
programs l ∗ r : (S × T) ←↩ (V × W), with l operating on the first components and r on the
second components. If two putback triples with preconditions L and R have been established for
l and r , the precondition of the product program will be

L ∗ R = ⟨ (s , t) (v , w) | L s v ∧ R t w ⟩

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 41. Publication date: January 2018.

				{	_	()	}

Reasoning
{	_	_	}
rearrV	v	→	(v,	())
		{	_	(_,	())	}
				{	_	_	}
				replace
				{	wʹ	_	v	|	wʹ	=	v	}
		*
				{	_	()	|	const	()	s	=	()	}
				skip	const	()
				{	hʹ	h	()	|	hʹ	=	h	}
		{	(wʹ,	hʹ)	(_,	h)	(v,	())	|	wʹ	=	v	∧	hʹ	=	h	}
{	(wʹ,	hʹ)	(_,	h)	v	|	wʹ	=	v	∧	hʹ	=	h	}

Putback triples

∀s,v.		R	s	v		⇒		∃sʹ.		b.put	s	v	=	s  ́
																					∧		Rʹ	sʹ	s	v

{	s	v	|	R	s	v	}		b		{	sʹ	s	v	|	Rʹ	sʹ	s	v	}

precondition: a binary relation 
on the original source and view

postcondition: a ternary relation on the 
updated source, original source, and view

soundness

Get behaviour

If				{	s	v	|	R	s	v	}		b		{	sʹ	_	v	|	C	sʹ	v	}	

then		b.get	∩	R		⊆		C

b.get	s	=	v
R	s	v b.put s v = sʹ

C sʹ v
sʹ = s
C s v

Proof

∎

soundness GetPut

Range triples

∀sʹ.		Pʹ	sʹ		⇒		∃v.		b.get	s	=	v	∧	R	s	v

{{	s	v	|	R	s	v	}}		b		{{	sʹ	|	Pʹ	sʹ	}}

input range: a binary relation 
on the original source and view

output range: a unary relation/predicate 
on the updated source

soundness

∀sʹ.		Pʹ	sʹ		⇒		∃s,v.		b.put	s	v	=	sʹ	∧	R	s	v

Main theorem MK II

If					{	s	v	|	R	s	v	}		b		{	sʹ	_	v	|	C	sʹ	v	} 
and				

then		b.get	is	defined	on	P  ́
and			b.get|Pʹ					C⊆

{{	s	v	|	R	s	v	}}	b	{{	sʹ	|	Pʹ	sʹ	}}

Key-based list alignment

keyAlign	ks	kv	b	c	=	
		case	
				normal	[]	[]	exit	[]	
						rearrV	[]	->	()	
								skip	const	()	
				normal	(s::_)	(v::_)	|	ks	s	==	kv	v	exit	(_::_)	
						rearrS	(s::ss)	->	(s,	ss)	
								rearrV	(v::vs)	->	(v,	vs)	
										b	*	keyAlign	ks	kv	b	c	
				adaptive	(_::_)	[]	
						_	_	->	[]	
			adaptive	ss	(v::_)	|	kv	v	`elem`	map	ks	ss	
						\ss	(v::_)	->	extract	ks	kv	v	ss	
				adaptive	_	(_::_)	
						\ss	(v::_)	->	c	v	::	ss

Verifying keyAlign

{	ss	vs	|	True	} 
keyAlign	… 
{	ssʹ	ss	vs	|	∃ss*.	ss*	retains	elements	in	ss	and 
																ssʹ	is	an	updated	version	of	ss*	and 
																				element-wise	consistent	with	vs	}

{{	ss	vs	|	True	}}		keyAlign	…		{{	ssʹ	|	True	}}

{…}		…		{…}
{{…}}	…	{{…}}

Evolution of session types

program/process

x	:=	read	ch

write	ch	…

ch:	?int; 
				!int;	
				!int;	end

type/protocol

:

write	ch	…

ch:	?int; 
				!(int	×	int);	end

Process–protocol synchroniser

• The get direction is type inference.

• For the put direction:

• Retain the original process behaviour (assuming that
the protocol is only being refactored or optimised)

• Reject an update if a new protocol deviates too much
from the original one

• Verification desirable

Towards a general-purpose

bidirectional language

General-purpose bidir. lang.

• Synchronisation problems are ubiquitous and diverse.

• Inventing a DSL for every problem?

• Reuse (and unification) of general BX concepts

• “BenchmarX reloaded” at BX ’17

• Tony at SSBX ’16: Implementing TGG in BiGUL?

• Tool support — IDE, verifier, debugger, etc

What does a general-
purpose bidirectional

language look like?
For state-based asymmetric lenses…

“Get-based” approach

∘	filter	p
map	f

First: write a consistency relation (get)

<alignment	strategy>
<management	of	ignored	elements>

Second: annotate the consistency relation 
with restoration (put) behaviour

“Put-based” approach
align	p	match	b	create	conceal	=	
		case	
				normal	[]	[]	exit	[]	
						rearrV	[]	->	()	
								skip	const	()	
				normal	(s::_)	(v::_)	|	p	s	&&	match	s	v	exit	(s::_)	|	p	s	
						rearrS	(s::ss)	->	(s,	ss)	
								rearrV	(v::vs)	->	(v,	vs)	
										b	*	align	p	match	b	create	conceal	
				adaptive	(s::_)	[]	|	p	s	
						\ss	_	->	let	(prefix,	remaining)	=	span	p	ss	
															in		catMaybes	(map	conceal	prefix)	++	remaining	
				normal	(s::_)	_	|	not	(p	s)	exit	(s::_)	|	not	(p	s)	
						rearrS	(s::ss)	->	(s,	ss)	
								rearrV	vs	->	((),	vs)	
										skip	const	()	*	align	p	match	b	create	conceal	
				adaptive	ss	(v::_)	|	isJust	(findFirstMatch	v	ss)	
						\ss	(v::_)	->	uncurry	(::)	(fromJust	(findFirstMatch	v	ss))	
				adaptive	_	(v::_)	|	p	(create	v)	
						\ss	(v::_)	->	create	v	::	ss

First: write a (put) program to restore
a consistency relation in mind

Second: the consistency relation (get) 
becomes executable for free

Conclusion

• Declarative approaches (DSLs) and investigation into
various forms of well-behavedness laws/principles are
definitely useful.

• But general-purpose bidirectional languages should be
given some thoughts too.

• In addition to well-behavedness guarantees…

• Max freedom to program and reason about the
consistency restoration behaviour

