
Towards a Visual Editor
for Lens Combinators

Tony Anjorin (Paderborn University, Germany) 
Josh Ko (National Institute of Informatics, Japan)

International Workshop on Bidirectional Transformations (BX) 
10 April 2018, Nice, France

external
DSLs

TGGs

JTL

QVT

internal
DSLs

BiGUL

GRoundTram
embedded

DSLs LINQ

mbeddr

BiGUL

BiGUL’s host language
is Haskell

Others
55%

C#
5%

Python
6%

C++
6%

C
13%

Java
15%

TIOBE Index for March 2018
https://www.tiobe.com/tiobe-index/

C#
5%

Python
6%

Haskell: 0.231%

My Conjecture
Haskell is a great language with a concise,
elegant concrete syntax, but …

… it is unfamiliar to most programmers
and is thus hard to learn and read

I tried to teach students BiGUL and wound up spending
most of the time explaining its cryptic concrete syntax

Why not establish BiGUL as an external DSL
with a truly “natural” concrete syntax?

you can generate whatever you
want out of the concrete syntax

I tried to teach students BiGUL and wound up spending
most of the time explaining its cryptic concrete syntax

Why not establish BiGUL as an external DSL
with a truly “natural” concrete syntax?

So what does “natural” mean?

So what does “natural” mean?

My students (and I tend to agree) say:

VISUAL

So what does “natural” mean?

My students (and I tend to agree) say:

VISUAL

SIGNALS
AND

PORTS
CONNECTORS AND

COMPONENTS

HIERARCHICAL
(ZOOM IN/OUT)

UML, Sysml
component

diagrams, ADLs

Simulink, VHDL

state charts,
Simulink

VISUALSIGNALS
AND

PORTS

CONNECTORS AND
COMPONENTS
HIERARCHICAL
(ZOOM IN/OUT)

VISUAL
BiGUL

Put Block

S

V Sb

Put Block

S

V Sbv

s

Put Block

S

V Sbv

s

b.put(s,v)

Replace

Replace

S S

S

Replace

Replace

S S

S
s

v

Replace

Replace

S S

S
s

v v

Skip

Skip

S

V S
=

f

Skip

Skip

S

V S
=

f

v

s

Skip

Skip

S

V S
=

f
s s

v

s

Skip

Skip

S

V S
=

f
s s

f(s)

v

s

Skip

Skip

S

V S
=

f
s s

f(s)

true

v

s

Skip

Skip

S

V S
=

f
s s

f(s)

true

v

s

s

Source Rearrangement

RearrS

V

 f

b

S

 f S

Debugging

[S]

S

RearrV

[S]f RearrS

f = \v -> (v,())replaceHead :=

Debugging

[S]

S

RearrV

[S]f RearrS

f = \v -> (v,())replaceHead :=

42

[]

Debugging

[S]

S

RearrV

[S]f RearrS

f = \v -> (v,())replaceHead :=

(42, ())
42

[]

Debugging

RearrS

(S,())

 f

Prod

[S]

 f [S]

f = \(x:xs)->(x,xs)

(42, ())

[]

Get Semantics

S

V Sb

Get Semantics

S

V Sb s

Get Semantics

S

V Sbb.get(s) s

Skip (Get Semantics)

Skip

S

V S
=

f

Skip (Get Semantics)

Skip

S

V S
=

f

s

Skip (Get Semantics)

Skip

S

V S
=

f

s

Switch(x, true, x)

Skip (Get Semantics)

Skip

S

V S
=

f
s

true

s

Switch(x, true, x)

Skip (Get Semantics)

Skip

S

V S
=

f
s

true

s

Switch(x, true, x)‘•’(x, x, x)

Skip (Get Semantics)

Skip

S

V S
=

f
s s

true

s

s

Switch(x, true, x)‘•’(x, x, x)

Skip (Get Semantics)

Skip

S

V S
=

f
s s

f(s)

true

s

s

Switch(x, true, x)‘•’(x, x, x)

Skip (Get Semantics)

Skip

S

V S
=

f
s s

f(s)

true

s

s

Switch(x, true, x)

‘=’(x, x, true) 
‘=’(x, y, false) if x ≠ y

‘•’(x, x, x)

Skip (Get Semantics)

Skip

S

V S
=

f
s s

f(s)

true

s

f(s) s

Switch(x, true, x)

‘=’(x, x, true) 
‘=’(x, y, false) if x ≠ y

‘•’(x, x, x)

How This Can Help
• A drag-and-drop visual editor, which is easier to use for

programmers not familiar with Haskell

• Novice programmers often need to start from an
operational understanding of the language.

• Proficient programmers sometimes also need to debug
their program by tracing its execution.

• BiGUL has an axiomatic semantics (to appear in the
next session), which currently does not cover lens
composition.

Beyond WB Combinators
• An instantiation of the relational/logic programming

paradigm (?)

• Lens combinators are deterministic in both directions.

• Well-behavedness has been regarded as an atomic
property established and preserved by lens combinators,
but the Skip circuit suggests that there is some “sub-
atomic” structure to explore.

• Prospect for “deterministic relational programming”?

• Also subsuming reversible programming

