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BiGUL

BiGUL’s host language 
is Haskell
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My Conjecture
Haskell is a great language with a concise,
elegant concrete syntax, but …

… it is unfamiliar to most programmers
and is thus hard to learn and read

I tried to teach students BiGUL and wound up spending 
most of the time explaining its cryptic concrete syntax
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Source Rearrangement
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How This Can Help
• A drag-and-drop visual editor, which is easier to use for 

programmers not familiar with Haskell

• Novice programmers often need to start from an 
operational understanding of the language.

• Proficient programmers sometimes also need to debug 
their program by tracing its execution.

• BiGUL has an axiomatic semantics (to appear in the 
next session), which currently does not cover lens 
composition.



Beyond WB Combinators
• An instantiation of the relational/logic programming 

paradigm (?)

• Lens combinators are deterministic in both directions.

• Well-behavedness has been regarded as an atomic 
property established and preserved by lens combinators, 
but the Skip circuit suggests that there is some “sub-
atomic” structure to explore.

• Prospect for “deterministic relational programming”?

• Also subsuming reversible programming




