
Relational algebraic
ornaments

Josh Ko & Jeremy Gibbons

Workshop on Dependently Typed Programming

Department of Computer Science
University of Oxford

Boston, MA, US, 24 September 2013

Workshop on Dependently Typed Programming
Nijmegen, the Netherlands, 27 August 2011

ExternalismInternalism

++ : Vec A m ! Vec A n ! Vec A (m + n)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)

proof structure follows program structure

Internalism

How far can
internalism go?

Minimum Coin Change

2/6 2/- 1/- 6d 3d 1d

shillings pence (d)

30d 24d 12d 6d 3d 1d

30d 12d 6d 24d 24d

48d

50¢ 25¢ 10¢ 5¢ 1¢

48¢

25¢ 10¢ 10¢ 1¢1¢1¢

“precisely typed” program

specification

proved to meet proof obligations
about

local optimisation

global optimisation

precisely typed program

specification

derive / reduce to

precise type

develop interactively✔

?

need only exist; no inspection of the program

local optimisation

global optimisation

local optimisation

global optimisation

precisely typed program

specification

derive / reduce to

precise type

develop interactively✔

?

need only exist; no inspection of the program

precise type
local optimisation

relational fold º

refine by
relational calculation

derive by
algebraic ornamentation

precisely typed program

specification

develop interactively✔

local optimisation

global optimisation
relational

Relations
potentially partial and nondeterministic mappings

(generalising functions)

A B
predicates on (subsets of) A × B
! ! Set

R : A ! B ! Set relates a to b
if R a b : Set is inhabited

Relations
potentially partial and nondeterministic mappings

(generalising functions)

A B()
functions from A to subsets of B
! ! Set

Relations
potentially partial and nondeterministic mappings

(generalising functions)

A B
relational programs from A to B
⇝

R : A ⇝ B nondeterministically maps a to b
if R a b : Set is inhabited

154 6 / Recursive Programs

Quicksort

The so-called 'advanced' sorting algorithms (quicksort, mergesort, heapsort, and
so on) all use some form of tree as an intermediate datatype. Here we sketch the
development of Hoare's quicksort (Hoare 1962), which follows the path of selection
sort quite closely.

Consider the type tree A defined by

tree A ::= null I fork (tree A, A, tree A).

The function flatten : list A +- tree A is defined by

flatten = Qnil,joinD,

where join (x, a, y) = x *[a]* y. Thus flatten produces a list of the elements in
a tree in left to right order.

In outline, the derivation of quicksort is

ordered · perm
::::> {since flatten is a function}

ordered · flatten · flatten ° · perm
= {claim: ordered· flatten= flatten· inordered (see below)}

flatten · inordered · flatten ° . perm
{converses}

flatten · (perm · flatten · inordered) 0

;;;? {fusion, for an appropriate definition of split}

flatten· Qnil, split0 D0 •

In quicksort we head for an algorithm expressed as a hylomorphism using trees as
an intermediate datatype.

The coreflexive inordered on trees is defined by

inordered = Q null ,fork · check D
where the coreflexive check holds for (x, a, y) if

(Vb: b intree x => bRa) 1\ (Vb: b intree y => aRb).

The relation intree is the membership test for trees. Introducing F f = f x id x f
for brevity, the proviso for the fusion step in the above calculation is

split0 • F(perm ·flatten) perm· flatten· fork· check.

specification

towards an executable program

inclusion

Converse

R : A ⇝ B = A ! B ! Set

R º = flip R : B ⇝ A
running R backwards

 S : List A ⇝ B

Relational folds

S : 1 + A × B ⇝ Bf : 1 + A × B ! B
fold f : List A ! B

functional relational

B = List A

⇒ S computes a subsequence of its input

S (inl _) = { [] }
S (inr (x , xs)) = { xs , x ∷ xs }

Converse of relational folds
well-founded unfolds (generating inductive data)

sum º : List Nat ⇝ Nat

sum º : Nat ⇝ List Nat
breaks n into a (finite) list summing to n

Minimisation
generate all possible results of T

choose a minimum under R

T = the relation that nondeterministically breaks n
 = into a list of coins representing n
R = the length ordering on lists

min R · Λ T

(min Q · Λ S º) º
min R · Λ S º

if there exists Q such that ...

º

Greedy Theorem

the minimum coin change problem can be solved by
repeatedly choosing the largest possible denomination

S′
⊇

º

p : Nat ! List Coin

⇒ { Greedy Theorem }

 (min R · Λ S º) n (p n)

same structure

 S′ º n (p n)

min R · Λ S º ⊇ S′

Algebraic ornamentation
S : 1 + A × B ⇝ B

data AlgList S : B ! Set

AlgList S b ≅ (xs : List A) × S xs b

data AlgList S : B ! Set where
nil : {b : B} ! S (inl tt) b !
 AlgList S b
cons : {b : B} !
 (x : A) !
 {b' : B} ! S (inr (x , b')) b !
 AlgList S b' ! AlgList S b

S : 1 + A × B ⇝ B
AlgList S b ≅ (xs : List A) × S xs b

AlgList S′ : Nat ! Set
indexed by total value

the head of a nonempty list can only be
the largest possible denomination

greedy : (n : Nat) ! AlgList S′ n

greedy : (n : Nat) ! AlgList S′ n

AlgList S′ n ≅ (xs : List Coin) × S′ xs n

forget

p = forget ∘ greedy : Nat ! List Coin

S′ (forget ()greedy n) n

S′ (

⇒ { Greedy Theorem }

 (min R · Λ S º) n (p n)

p = forget ∘ greedy : Nat ! List Coin

p n) n
⇒ { converse }

 S′ º n (p n)

greedy : (n : Nat) ! AlgList S′ n

min R · Λ S º

 S′ º

AlgList S′

(n : Nat) ! AlgList S′ n

relational
specification

relational fold º

internalist type

internalist
program

relational program
derivation

algebraic ornamentation

interactive development

[Internalist type] derivation
Relational program derivation being one possible way

