
A formally verified core language for 
putback-based bidirectional programming
Josh Ko b, Tao Zan a, b, and Zhenjiang Hu a, b

BiGUL
a SOKENDAI (The Graduate University for Advanced Studies), Japan

b National Institute of Informatics, Japan
Workshop on Partial Evaluation and Program Manipulation  

19 Jan 2016, St Petersburg, FL, US

in Agda!

Bidirectional transformations (asymmetric lens version)

POPL 2016  
The annual Symposium on Principles of
Programming Languages is a forum ...
PEPM 2016  
The PEPM Symposium/Workshop series
aims at bringing together researchers ...

POPL 2016
PEPM 2016

PEPM ’16
POPL ’16

PEPM ’16 
The PEPM Symposium/Workshop series
aims at bringing together researchers ...
POPL ’16 
The annual Symposium on Principles of
Programming Languages is a forum ...

get : S → V

put : S → V → S

Source View

PutGet : 
get (put s v) ≡ v

GetPut : 
put s (get s) ≡ s

Well-behavedness

Bidirectional programming with lenses (Foster et al., POPL ’05)

lens

composition

A trick for proving 
partial well-behavedness

Partial lenses

record Lens (S V : Set) : Set where  
 field 
 get : S → Maybe V 
 put : S → V → Maybe S 
 PutGet : put s v ≡ just s’ → get s’ ≡ just v  
 GetPut : get s ≡ just v → put s v ≡ just s

>>= : Maybe A → (A → Maybe B) → Maybe B

Lens composition

compose : Lens A B → Lens B C → Lens A C 
compose l r = record 
 { get =λa → l.get a >>=λb → r.get b 
 ; put =λa c → l.get a >>=λb → r.put b c >>=λb’ → l.put a b’ 
 ; PutGet = ? ; GetPut = ? }

l r
compose l r

Direct proof of PutGet

PutGet : 
 (l.get a >>=λb → r.put b c >>=λb’ → l.put a b’) ≡ just a’ 
 → (l.get a’ >>=λb → r.get b) ≡ just c

lemma : 
 (mx >>= f) ≡ just y → ∃[x] (mx ≡ just x) × (f x ≡ just y)

PutGet p with lemma p 
PutGet _ | (b, g, p) with lemma p 
PutGet _ | (b, g, _) | (b’, p, q) rewrite l.PutGet q = r.PutGet p

Instead of decomposing proofs, 
make the proofs decompose by themselves!

Deep embedding for defining two interpretations

data Par : Set → Set₁ where 
 return : A → Par A 
 >>= : Par A → (A → Par B) → Par B
runPar : Par A → Maybe A 
runPar (return x) = just x  
runPar (mx >>= f) = runPar mx >>= (runPar ∘ f)
↦ : Par A → A → Set  
(return x) ↦ y = x ≡ y 
(mx >>= f) ↦ y = ∃[x] (mx ↦ x) × (f x ↦ y)
px ↦ x ↔ runPar px ≡ just x

Partial lenses

record Lens (S V : Set) : Set  
 field 
 get : S → 
 put : S → V → 
 PutGet : put s v 
 GetPut : get s

where

Par
Par
V

S
↦

↦
↦
↦

s’ → get s’ v
v → put s v s

₁

Well-behavedness proofs become elementary programs!

PutGet : 
 (l.get a >>=λb → r.put b c >>=λb’ → l.put a b’) ↦ a’ 
 → (l.get a’ >>=λb → r.get b) ↦ c

∃[b] (l.get a ↦ b) × (∃[b’] (r.put b c ↦ b’) × (l.put a b’ ↦ a’)) 
 → ∃[b] (l.get a’ ↦ b) × (r.get b ↦ c)

=
PutGet (b, g, b’, p, q) = (b’, l.PutGet q, r.PutGet p)

BiGUL as reported in the paper

Basic lenses
Source decomposition
View rearrangement
Case analysis on source
Case analysis on view
List alignment

The latest version of BiGUL

Basic lenses
Standard lens combinators
Source/view rearrangement
General case analysis (on both source and view)

Haskell

List alignment ⇐ general case analysis + recursion

A sample BiGULHaskell program
updateSelected ::
 (s -> Bool) -> BiGUL s v -> (v -> s) —> BiGUL [s] [v]
updateSelected p b c = Case
 [$(normalSV [p| [] |] [p| [] |])$
 $(rearrV [| \[] -> () |])$ Skip
 , $(adaptiveSV [p| [] |] [p| _:_ |])$ 
 _ vs -> map c vs
 , $(normalSV [p| (p -> True):_ |] [p| _:_ |])$
 $(rearrS [| \(s:ss) -> (s, ss) |])$ 
 $(rearrV [| \(v:vs) -> (v, vs) |])$
 b `Prod` updateSelected p b c
 , $(adaptiveSV [p| (p -> True):_ |] [p| [] |])$
 \ss _ -> dropWhile p ss
 , $(normalS [p| (p -> False):_ |])$
 $(rearrS [| \(s:ss) -> ss |])$ updateSelected p b c 
]

Issues we are trying to tackle

Totality
BiGUL programs are only guaranteed to be
partially well-behaved ̶ they can still fail
inadvertently due to implicit dynamic checks.
Dependently typed lenses?
Functional correctness
Sometimes it is not easy to get BiGUL programs
to work as intended (especially in the presence
of dynamic checks and recursion).
Reasoning principles/tools needed

Thanks!
http://www.prg.nii.ac.jp/bx

What have been built on top of BiGUL

View-updating for relational databases
expressing more flexible view-updating
strategies with a putback-based language

Parsing & “reflective” printing
describing a consistent pair of parser and
“reflective” printer in a single program

Synchronisation of web server configuration files
unifying different configuration file formats to
simplify the self-adaptation logic

