module Data.Fin.Subset where
open import Algebra
import Algebra.Properties.BooleanAlgebra as BoolAlgProp
import Algebra.Properties.BooleanAlgebra.Expression as BAExpr
import Data.Bool.Properties as BoolProp
open import Data.Fin
open import Data.List.Base as List using (List)
open import Data.Nat
open import Data.Product
open import Data.Vec using (Vec; _∷_; _[_]=_)
import Relation.Binary.Vec.Pointwise as Pointwise
open import Relation.Nullary
infix 4 _∈_ _∉_ _⊆_ _⊈_
open import Data.Bool.Base public
using () renaming (Bool to Side; true to inside; false to outside)
Subset : ℕ → Set
Subset = Vec Side
_∈_ : ∀ {n} → Fin n → Subset n → Set
x ∈ p = p [ x ]= inside
_∉_ : ∀ {n} → Fin n → Subset n → Set
x ∉ p = ¬ (x ∈ p)
_⊆_ : ∀ {n} → Subset n → Subset n → Set
p₁ ⊆ p₂ = ∀ {x} → x ∈ p₁ → x ∈ p₂
_⊈_ : ∀ {n} → Subset n → Subset n → Set
p₁ ⊈ p₂ = ¬ (p₁ ⊆ p₂)
booleanAlgebra : ℕ → BooleanAlgebra _ _
booleanAlgebra n =
BoolAlgProp.replace-equality
(BAExpr.lift BoolProp.booleanAlgebra n)
Pointwise.Pointwise-≡
private
open module BA {n} = BooleanAlgebra (booleanAlgebra n) public
using
( ⊥
; ⊤
)
renaming
( _∨_ to _∪_
; _∧_ to _∩_
; ¬_ to ∁
)
⁅_⁆ : ∀ {n} → Fin n → Subset n
⁅ zero ⁆ = inside ∷ ⊥
⁅ suc i ⁆ = outside ∷ ⁅ i ⁆
⋃ : ∀ {n} → List (Subset n) → Subset n
⋃ = List.foldr _∪_ ⊥
⋂ : ∀ {n} → List (Subset n) → Subset n
⋂ = List.foldr _∩_ ⊤
Nonempty : ∀ {n} (p : Subset n) → Set
Nonempty p = ∃ λ f → f ∈ p
Empty : ∀ {n} (p : Subset n) → Set
Empty p = ¬ Nonempty p
Lift : ∀ {n} → (Fin n → Set) → (Subset n → Set)
Lift P p = ∀ {x} → x ∈ p → P x